OFFSET
1,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..850
F. Harary, E. M. Palmer and R. C. Read, On the cell-growth problem for arbitrary polygons, Discr. Math. 11 (1975), 371-389.
FORMULA
See Mathematica code.
a(n) ~ 2^(6*n - 1) * 3^(6*n + 1/2) / (sqrt(Pi) * n^(5/2) * 5^(5*n + 5/2)). - Vaclav Kotesovec, Mar 13 2016
MATHEMATICA
p=7; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) + If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)], 3Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1, 2}]])/2, {n, 1, 20}] (* Robert A. Russell, Dec 11 2004 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Robert A. Russell, Dec 11 2004
Name edited by Andrew Howroyd, Nov 20 2017
STATUS
approved