login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005419
Number of nonequivalent dissections of a polygon into n heptagons by nonintersecting diagonals up to rotation and reflection.
(Formerly M3023)
6
1, 1, 3, 16, 112, 1020, 10222, 109947, 1230840, 14218671, 168256840, 2031152928, 24931793768, 310420597116, 3912823963482, 49853370677834, 641218583442360, 8316918403772790, 108686334145327785, 1429927553582849256, 18927697628428129728, 251931892228273729375
OFFSET
1,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
F. Harary, E. M. Palmer and R. C. Read, On the cell-growth problem for arbitrary polygons, Discr. Math. 11 (1975), 371-389.
FORMULA
See Mathematica code.
a(n) ~ 2^(6*n - 1) * 3^(6*n + 1/2) / (sqrt(Pi) * n^(5/2) * 5^(5*n + 5/2)). - Vaclav Kotesovec, Mar 13 2016
MATHEMATICA
p=7; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) + If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)], 3Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1, 2}]])/2, {n, 1, 20}] (* Robert A. Russell, Dec 11 2004 *)
CROSSREFS
Column k=7 of A295260.
Sequence in context: A002404 A097142 A039751 * A379193 A332024 A124537
KEYWORD
nonn
EXTENSIONS
More terms from Robert A. Russell, Dec 11 2004
Name edited by Andrew Howroyd, Nov 20 2017
STATUS
approved