OFFSET
0,1
COMMENTS
Maximal order of an element of finite order in GL(2n, Z) or GL(2n+1, Z).
a(n) is the max of the first n numbers in A080742.
REFERENCES
H. Lüneburg, Galoisfelder, Kreisteilungskörper und Schieberegisterfolgen. B. I. Wissenschaftsverlag, Mannheim, 1979.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Benjamin Grossmann, What is the largest (finite) order of an element of GL(10,Q)?
J. Kuzmanovich and A. Pavlichenkov, Finite groups of matrices whose entries are integers, Amer. Math. Monthly, 109 (2002), 173-186.
FORMULA
MATHEMATICA
(* b, c = a080737 *)
nmax = 26;
kmax = 1200000; (* kmax increased by 100000 until results do not change *)
b[1] = b[2] = 0; b[p_?PrimeQ] := b[p] = p-1; b[k_] := b[k] = If[Length[f = FactorInteger[k]]==1, EulerPhi[k], Total[b /@ (f[[All, 1]]^f[[All, 2]])] ];
orders = Table[{k, b[k]}, {k, 1, kmax}];
c[0] = 2; c[n_] := c[n] = Select[orders, 2n-1 <= #[[2]] <= 2n&][[-1, 1]];
a[n_] := Table[c[m], {m, 0, n}] // Max;
Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Dec 17 2017 *)
CROSSREFS
KEYWORD
nonn,nice,more
AUTHOR
EXTENSIONS
Entry revised by N. J. A. Sloane, Mar 10 2002
STATUS
approved