login
A058215
Largest solution of phi(x) = 2^n.
4
2, 6, 12, 30, 60, 120, 240, 510, 1020, 2040, 4080, 8160, 16320, 32640, 65280, 131070, 262140, 524280, 1048560, 2097120, 4194240, 8388480, 16776960, 33553920, 67107840, 134215680, 268431360, 536862720, 1073725440, 2147450880, 4294901760, 8589934590
OFFSET
0,1
COMMENTS
The ratio of adjacent terms is 2 except for five terms (if there are exactly five Fermat primes). - T. D. Noe, Jun 21 2012
LINKS
Amiram Eldar, Table of n, a(n) for n = 0..1000 (terms 0..100 from T. D. Noe)
FORMULA
Assuming there are only 5 Fermat primes (A019434), a(n) = 2^(n-30)*(2^32-1) for n >= 31.
EXAMPLE
For n = 6, 2^n = 64; the solutions of phi(x) = 64 are {85,128,136,160,170,192,204,240}; the largest is a(6) = 240.
MATHEMATICA
phiinv[ n_, pl_ ] := Module[ {i, p, e, pe, val}, If[ pl=={}, Return[ If[ n==1, {1}, {} ] ] ]; val={}; p=Last[ pl ]; For[ e=0; pe=1, e==0||Mod[ n, (p-1)pe/p ]==0, e++; pe*=p, val=Join[ val, pe*phiinv[ If[ e==0, n, n*p/pe/(p-1) ], Drop[ pl, -1 ] ] ] ]; Sort[ val ] ]; phiinv[ n_ ] := phiinv[ n, Select[ 1+Divisors[ n ], PrimeQ ] ]; Table[ phiinv[ 2^n ][ [ -1 ] ], {n, 0, 30} ] (* phiinv[ n, pl ] = list of x with phi(x)=n and all prime divisors of x in list pl. phiinv[ n ] = list of x with phi(x)=n *)
PROG
(PARI) a(n) = invphiMax(2^n); \\ Amiram Eldar, Nov 11 2024, using Max Alekseyev's invphi.gp
KEYWORD
nonn
AUTHOR
Labos Elemer, Nov 30 2000
EXTENSIONS
Edited by Dean Hickerson, Jan 25 2002
STATUS
approved