login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005422
Largest prime factor of 10^n - 1.
(Formerly M2889)
14
3, 11, 37, 101, 271, 37, 4649, 137, 333667, 9091, 513239, 9901, 265371653, 909091, 2906161, 5882353, 5363222357, 333667, 1111111111111111111, 27961, 10838689, 513239, 11111111111111111111111, 99990001, 182521213001, 1058313049
OFFSET
1,1
REFERENCES
J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
S. S. Wagstaff, Jr., The Cunningham Project
FORMULA
For n > 1, a(n) = A003020(n). For 1 < n < 10, a(n) = A075024(n). - M. F. Hasler, Jul 30 2015
a(n) = A006530(A002283(n)). - Vincenzo Librandi, Jul 13 2016
a(A004023(n)) = A002275(A004023(n)). - Bernard Schott, May 24 2022
MAPLE
A005422 := proc(n)
10^n-1 ;
A006530(%) ;
end proc: # R. J. Mathar, Dec 02 2016
MATHEMATICA
Table[FactorInteger[10^n - 1][[-1, 1]], {n, 1, 40}] (* Vincenzo Librandi, Jul 13 2016 *)
PROG
(PARI) a(n)=vecmax(factor(10^n-1)[, 1]) \\ Simplified by M. F. Hasler, Jul 30 2015
(Magma) [Maximum(PrimeDivisors(10^n-1)): n in [1..45]]; // Vincenzo Librandi, Jul 13 2016
CROSSREFS
Same as A003020 except for the additional a(1) = 3.
Cf. similar sequences listed in A274906.
Sequence in context: A046107 A243110 A061075 * A040017 A007615 A065540
KEYWORD
nonn
EXTENSIONS
Terms to a(100) in b-file from Yousuke Koide added by T. D. Noe, Dec 06 2006
Edited by M. F. Hasler, Jul 30 2015
a(101)-a(322) in b-file from Ray Chandler, Apr 22 2017
a(323)-a(352) in b-file from Max Alekseyev, Apr 26 2022
STATUS
approved