login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005424
Smallest number that requires n iterations of the bi-unitary totient function (A116550) to reach 1.
(Formerly M0530)
5
2, 3, 4, 5, 8, 9, 13, 16, 17, 24, 25, 35, 44, 63, 64, 91, 97, 128, 193, 221, 259, 324, 353, 391, 477, 702, 929, 1188, 1269, 1589, 1613, 2017, 2309, 2623, 3397, 4064, 4781, 5468, 6515, 6887, 9213, 12286, 12887, 14009, 16564, 16897, 17803, 30428, 36256
OFFSET
1,1
COMMENTS
Let p(n) = number of unitary divisors k of n, k<n, that are relatively prime to n. Let p_1(n) = p(n), p_r(n) = p(p_{r-1}(n)). Sequence gives minimal r such that p_r(n)=1.
REFERENCES
M. Lal, H. Wareham and R. Mifflin, Iterates of the bi-unitary totient function, Utilitas Math., 10 (1976), 347-350.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..97 (terms 1..78 from Donovan Johnson)
MAPLE
L := [seq(0, i=0..100)] ;
for n from 1 do
itr := A225320(n) ;
if itr < nops(L) then
if op(itr, L) = 0 then
L := subsop(itr=n, L) ;
print(L) ;
end if;
end if;
end do: # R. J. Mathar, May 02 2013
MATHEMATICA
A116550[1] = 1; A116550[n_] := With[{pp = Power @@@ FactorInteger[n]}, Count[Range[n], m_ /; Intersection[pp, Power @@@ FactorInteger[m]] == {}]]; A225320[n_] := A225320[n] = If[n == 1, 0, 1+A225320[A116550[n]]]; L = Array[0&, 100]; For[n = 1, n <= 40000, n++, itr = A225320[n]; If[itr < Length[L], If[L[[itr]] == 0, L = ReplacePart[L, itr -> n]; Print[Select[L, Positive] // Last]]]]; Select[L, Positive] (* Jean-François Alcover, Jan 13 2014, after R. J. Mathar *)
CROSSREFS
KEYWORD
nonn,nice
STATUS
approved