login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105317
Powers of Fibonacci numbers.
7
0, 1, 2, 3, 4, 5, 8, 9, 13, 16, 21, 25, 27, 32, 34, 55, 64, 81, 89, 125, 128, 144, 169, 233, 243, 256, 377, 441, 512, 610, 625, 729, 987, 1024, 1156, 1597, 2048, 2187, 2197, 2584, 3025, 3125, 4096, 4181, 6561, 6765, 7921, 8192, 9261, 10946, 15625, 16384, 17711
OFFSET
1,3
COMMENTS
The subset of nontrivial Fibonacci powers [numbers A000045(k)^n which are not in A000045] starts 4, 9, 16, 25, 27, 32, 64, 81, 125, 128, 169, 243, 256, 441, 512, 625, 729, 1024, 1156... - R. J. Mathar, Jan 26 2015. These are the initial terms of A254719. - Reinhard Zumkeller, Feb 06 2015
LINKS
R. Zumkeller, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Eric Weisstein's World of Mathematics, Fibonacci Number
EXAMPLE
2197 = 13^3 = A000045(7)^3, therefore 2197 is a term.
MAPLE
N:= 10^6: # to get all terms <= N
select(`<=`, {0, 1, seq(seq(combinat:-fibonacci(i)^j, i = 3 ..floor(log[phi](sqrt(5)*N^(1/j)+1))), j=1..ilog2(N))}, N);
# if using Maple 11 or earlier, uncomment the next line
# sort(convert(%, list)); # Robert Israel, Jan 26 2015
MATHEMATICA
lim = 10^5; t = Table[f = Fibonacci[n]; f^Range[Floor[Log[lim]/Log[f]]], {n, 3, Ceiling[Log[GoldenRatio, lim] + 1]}]; Union[{0, 1}, Flatten[t]] (* T. D. Noe, Sep 27 2011 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a105317 n = a105317_list !! (n-1)
a105317_list = 0 : 1 : h 1 (drop 4 a000045_list) (singleton (2, 2)) where
h y xs'@(x:xs) s
| x < ff = h y xs (insert (x, x) s)
| ff == y = h y xs' s'
| otherwise = ff : h ff xs' (insert (f * ff, f) s')
where ((ff, f), s') = deleteFindMin s
-- Reinhard Zumkeller, Feb 06 2015
(PARI) list(lim)=my(v=List([0]), k=1, f, t); while(k<=lim, listput(v, k); k*=2); k=3; while(k<=lim, listput(v, k); k*=3); k=5; while(k<=lim, listput(v, k); k*=5); k=6; while((f=fibonacci(k++))<=lim, t=1; while((t*=f)<=lim, listput(v, t))); Set(v) \\ Charles R Greathouse IV, Oct 03 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Apr 25 2005
STATUS
approved