Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Oct 30 2023 07:48:22
%S 0,1,2,3,4,5,8,9,13,16,21,25,27,32,34,55,64,81,89,125,128,144,169,233,
%T 243,256,377,441,512,610,625,729,987,1024,1156,1597,2048,2187,2197,
%U 2584,3025,3125,4096,4181,6561,6765,7921,8192,9261,10946,15625,16384,17711
%N Powers of Fibonacci numbers.
%C The subset of nontrivial Fibonacci powers [numbers A000045(k)^n which are not in A000045] starts 4, 9, 16, 25, 27, 32, 64, 81, 125, 128, 169, 243, 256, 441, 512, 625, 729, 1024, 1156... - _R. J. Mathar_, Jan 26 2015. These are the initial terms of A254719. - _Reinhard Zumkeller_, Feb 06 2015
%H R. Zumkeller, <a href="/A105317/b105317.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe)
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FibonacciNumber.html">Fibonacci Number</a>
%e 2197 = 13^3 = A000045(7)^3, therefore 2197 is a term.
%p N:= 10^6: # to get all terms <= N
%p select(`<=`,{0,1,seq(seq(combinat:-fibonacci(i)^j, i = 3 ..floor(log[phi](sqrt(5)*N^(1/j)+1))),j=1..ilog2(N))},N);
%p # if using Maple 11 or earlier, uncomment the next line
%p # sort(convert(%,list)); # _Robert Israel_, Jan 26 2015
%t lim = 10^5; t = Table[f = Fibonacci[n]; f^Range[Floor[Log[lim]/Log[f]]], {n, 3, Ceiling[Log[GoldenRatio, lim] + 1]}]; Union[{0, 1}, Flatten[t]] (* _T. D. Noe_, Sep 27 2011 *)
%o (Haskell)
%o import Data.Set (singleton, deleteFindMin, insert)
%o a105317 n = a105317_list !! (n-1)
%o a105317_list = 0 : 1 : h 1 (drop 4 a000045_list) (singleton (2, 2)) where
%o h y xs'@(x:xs) s
%o | x < ff = h y xs (insert (x, x) s)
%o | ff == y = h y xs' s'
%o | otherwise = ff : h ff xs' (insert (f * ff, f) s')
%o where ((ff, f), s') = deleteFindMin s
%o -- _Reinhard Zumkeller_, Feb 06 2015
%o (PARI) list(lim)=my(v=List([0]),k=1,f,t); while(k<=lim, listput(v,k); k*=2); k=3; while(k<=lim, listput(v,k); k*=3); k=5; while(k<=lim, listput(v,k); k*=5); k=6; while((f=fibonacci(k++))<=lim, t=1; while((t*=f)<=lim, listput(v,t))); Set(v) \\ _Charles R Greathouse IV_, Oct 03 2016
%Y Subsequences: A056570-A056574, A007598, A000045, A000079, A000244, A000351, A001018, A001022 and A009965.
%Y Cf. A103323, A254719.
%K nonn
%O 1,3
%A _Reinhard Zumkeller_, Apr 25 2005