login
A075024
a(n) is the largest prime divisor of the number A173426(n) = concatenate(1,2,...,n-1,n,n-1,...,2,1).
7
1, 11, 37, 101, 271, 37, 4649, 137, 333667, 12345678910987654321, 17636684157301569664903, 2799473675762179389994681, 2354041513534224607850261, 2068140300159522133, 498056174529497, 112240064764214229701, 4188353169004802474320231191377
OFFSET
1,2
COMMENTS
Also for 1 < n < 10, a(n) is the common prime divisor for all A010785(m) which consist of n digits. - Alexander R. Povolotsky, Jun 05 2014, corrected by M. F. Hasler, Jul 30 2015
According to the definition (and given terms), this is the greatest prime factor (A006530) of A173426 and not of A002477, as an earlier formula asserted and which may have been an assumption of the preceding comment. - M. F. Hasler, Jul 29 2015
FORMULA
a(n) = A006530(A173426(n)). - Michel Marcus, Jun 05 2014, corrected by M. F. Hasler, Jul 29 2015
EXAMPLE
a(5) = 271 as 123454321 = 41*41*271*271.
a(25) = 12471243489559387823527232424981012432152516319410549 is the larger factor of the semiprime A173426(24) = A075023(25) * a(n).
MATHEMATICA
Table[FactorInteger[FromDigits[Join[Flatten[IntegerDigits/@Range[ n]], Flatten[ IntegerDigits/@Range[n-1, 1, -1]]]]][[-1, 1]], {n, 20}] (* Harvey P. Dale, May 20 2016 *)
PROG
(PARI) a(n) = {if (n == 1, return (1)); s = ""; for (i=1, n, s = concat(s, Str(i)); ); forstep (i=n-1, 1, -1, s = concat(s, Str(i)); ); f = factor(eval(s)); f[#f~, 1]; } \\ Michel Marcus, Jun 05 2014
(PARI) A075024(n)=A006530(A173426(n)) \\ A006530 should provide efficient code and also covers the case n=1. - M. F. Hasler, Jul 29 2015
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Sep 01 2002
EXTENSIONS
More terms from Sascha Kurz, Jan 03 2003
a(16)-a(17) from Michel Marcus, Jun 05 2014
More terms from M. F. Hasler, Jul 29 2015
STATUS
approved