OFFSET
1,1
COMMENTS
All primes > 3 are members.
Is this sequence of positive density? I expect a(n) ~ 4n but can only prove n (log log n)^k/ log n << a(n) << n for arbitrary k. - Charles R Greathouse IV, May 01 2011
Number of terms < 10^k: 3, 32, 324, 3222, 32026, 318583, 3181133, 31766404, ..., . - Robert G. Wilson v, May 01 2011
EXAMPLE
17 is in the sequence because d(16) = 5, d(17) = 2, d(18) = 6 and 5 > 2 < 6.
MATHEMATICA
fQ[n_] := DivisorSigma[0, n - 1] > DivisorSigma[0, n] < DivisorSigma[0, n + 1]; Select[ Range@ 200, fQ] (* Robert G. Wilson v, May 01 2011 *)
PROG
(PARI) isok(k) = if (k>1, numdiv(k) < min(numdiv(k-1), numdiv(k+1))); \\ Michel Marcus, Mar 26 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Sep 02 2002
EXTENSIONS
Corrected and extended by Jason Earls, Sep 04 2002
STATUS
approved