login
A088502
Numbers n such that (n^2 - 5)/4 is prime.
4
5, 7, 9, 11, 13, 17, 19, 21, 23, 27, 31, 33, 39, 41, 43, 49, 53, 57, 61, 63, 71, 77, 79, 83, 89, 91, 93, 97, 101, 107, 109, 111, 113, 119, 121, 129, 131, 133, 137, 141, 153, 167, 171, 173, 179, 187, 189, 193, 201, 203, 207, 229, 231, 241, 251, 253, 261, 263, 269
OFFSET
1,1
COMMENTS
Under Bunyakovsky's conjecture this sequence is infinite. - Charles R Greathouse IV, Dec 28 2011
LINKS
FORMULA
a(n) = 2*A002328(n) - 1 = Sqrt(A110013(n)). - Ray Chandler, Sep 07 2005
EXAMPLE
(23*23 - 5)/4 = 131, 131 is prime, 23 is the 9th n of the sequence.
MATHEMATICA
Select[Range[500], PrimeQ[(#^2 - 5)/4] &] (* Vincenzo Librandi, Oct 06 2012 *)
PROG
(PARI) for(k=2, 1e3, if(isprime(k^2+k-1), print1(2*k+1", "))) \\ Charles R Greathouse IV, Dec 28 2011
(Magma) [n: n in [1..300 by 2] | IsPrime((n^2-5) div 4)]; // Vincenzo Librandi, Oct 06 2012
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Pierre CAMI, Nov 13 2003
STATUS
approved