login
A075026
Define a number k to occupy a divisor cavity if d(k-1) > d(k) < d(k+1) where d(k) is the number of divisors of k. Sequence gives composite numbers occupying a divisor cavity.
3
9, 25, 49, 51, 55, 65, 69, 77, 91, 111, 115, 121, 125, 129, 153, 155, 161, 169, 175, 183, 185, 187, 209, 221, 235, 237, 247, 249, 259, 265, 267, 274, 287, 289, 291, 295, 305, 309, 319, 321, 323, 329, 339, 341, 343, 351, 355, 361, 365, 369, 371, 377, 386, 391
OFFSET
0,1
MAPLE
q:= k-> not isprime(k) and (d->
d(k-1)>d(k) and d(k)<d(k+1))(numtheory[tau]):
select(q, [$1..400])[]; # Alois P. Heinz, Sep 28 2021
MATHEMATICA
Select[Flatten[Position[Partition[DivisorSigma[0, Range[400]], 3, 1], _?(#[[1]]> #[[2]]<#[[3]]&), 1, Heads->False]]+1, CompositeQ] (* Harvey P. Dale, Oct 23 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Sep 02 2002
EXTENSIONS
Corrected and extended by Jason Earls, Sep 04 2002
STATUS
approved