login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A075019 a(1) = 1; for n>1, a(n) = the smallest prime divisor of the number C(n) formed from the concatenation of 1,2,3,... up to n. 14
1, 2, 3, 2, 3, 2, 127, 2, 3, 2, 3, 2, 113, 2, 3, 2, 3, 2, 13, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 29, 2, 3, 2, 3, 2, 71, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 23, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 10386763, 2, 3, 2, 3, 2, 397, 2, 3, 2, 3, 2, 37907, 2, 3, 2, 3, 2, 73, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 37, 2, 3, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Least prime factor of A007908(n). For 1 < n <= 5000, a(n) < A007908(n), but this should fail infinitely often (assuming standard heuristics). - Charles R Greathouse IV, Apr 10 2014

From Robert Israel, Aug 28 2015: (Start)

a(n) = 2 iff n is even.

a(n) = 3 iff n == 3 or 5 (mod 6).

a(n) = 5 iff n == 25 (mod 30). (End)

LINKS

Robert Israel and Robert G. Wilson v, Table of n, a(n) for n = 1..462 first 120 terms from Robert Israel.

EXAMPLE

a(5)= 3, 3 is the smallest prime divisor of 12345.

MAPLE

with(numtheory):

T:=proc(t) local x, y; x:=t; y:=0; while x>0 do x:=trunc(x/10); y:=y+1; od; end:

P:=proc(q) local a, b, n; b:=1; print(1); for n from 2 to q do b:=n+b*10^T(n);

a:=sort([op(divisors(b))]); print(a[2]); od; end: P(100); # Paolo P. Lava, Apr 30 2014

# Alternative:

C:= 1: A[1]:= 1:

for n from 2 to 100 do

C:= C*10^(1+ilog10(n))+n;

F:= map(t -> t[1], ifactors(C, 'easy')[2]);

if hastype(F, integer) then A[n]:= min(select(type, F, integer))

else A[n]:= min(numtheory:-factorset(C))

fi

od:

seq(A[n], n=1..100); # Robert Israel, Aug 28 2015

MATHEMATICA

a = {}; b = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[k]]], {k, Length[w]}]; p = FromDigits[a]; AppendTo[b, First[First[FactorInteger[ p]]]], {n, 25}]; b (* Artur Jasinski, Apr 04 2008 *)

PROG

(PARI) lpf(n)=forprime(p=2, 1e3, if(n%p==0, return(p))); factor(n)[1, 1]

print1(N=1); for(n=2, 100, N=N*10^#Str(n)+n; print1(", "lpf(N))) \\ Charles R Greathouse IV, Apr 10 2014

CROSSREFS

Cf. A000422, A007908, A075020, A104759, A116504, A116505, A138789, A138790, A138958, A138959, A138960, A138961, A138962.

Sequence in context: A164962 A251089 A119880 * A138960 A245553 A115397

Adjacent sequences:  A075016 A075017 A075018 * A075020 A075021 A075022

KEYWORD

base,nonn

AUTHOR

Amarnath Murthy, Sep 01 2002

EXTENSIONS

More terms from Sascha Kurz, Jan 03 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 28 21:38 EDT 2017. Contains 287241 sequences.