login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138962
a(1) = 1, a(n) = the smallest prime divisor of A138793(n).
6
1, 3, 3, 29, 3, 3, 19, 3, 3, 457, 3, 3, 16087, 3, 3, 35963, 3, 3, 167, 3, 3, 7, 3, 3, 13, 3, 3, 953, 3, 3, 7, 3, 3, 548636579, 3, 3, 19, 3, 3, 71, 3, 3, 13, 3, 3, 89, 3, 3, 114689, 3, 3, 17, 3, 3, 12037, 3, 3, 7, 3, 3
OFFSET
1,2
COMMENTS
a(61) > 10^11. - Robert Price, Mar 22 2015
LINKS
FORMULA
a(n) = A020639(A138793(n)). - Daniel Suteu, May 27 2022
MATHEMATICA
b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[k]]], {k, 1, Length[w]}]; p = FromDigits[Reverse[a]]; AppendTo[b, First[First[FactorInteger[p]]]], {n, 1, 31}]; b (* Artur Jasinski, Apr 04 2008 *)
lst = {}; Table[First[First[FactorInteger[FromDigits[Reverse[lst = Join[lst, IntegerDigits[n]]]]]]], {n, 1, 60}] (* Robert Price, Mar 22 2015 *)
PROG
(PARI)
f(n) = my(D = Vec(concat(apply(s->Str(s), [1..n])))); eval(concat(vector(#D, k, D[#D-k+1]))); \\ A138793
a(n) = my(k=f(n)); forprime(p=2, 10^6, if(k%p == 0, return(p))); if(n == 1, 1, vecmin(factor(k)[, 1])); \\ Daniel Suteu, May 27 2022
KEYWORD
nonn
AUTHOR
Artur Jasinski, Apr 04 2008
EXTENSIONS
a(32)-a(60) from Robert Price, Mar 22 2015
STATUS
approved