login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A138963
a(1) = 1, a(n) = the largest prime divisor of A138793(n).
1
1, 7, 107, 149, 953, 218107, 402859, 4877, 379721, 4349353, 169373, 182473, 1940144339383, 2184641, 437064932281, 5136696159619, 67580875919190833, 1156764458711, 464994193118899, 4617931439293, 1277512103328491957510030561, 8177269604099
OFFSET
1,2
COMMENTS
For the smallest prime divisors of A138793 see A138962.
LINKS
Daniel Suteu and Robert Price, Table of n, a(n) for n = 1..63 (terms a(1)..a(45) from Robert Price)
FORMULA
a(n) = A006530(A138793(n)). - Daniel Suteu, May 26 2022
MATHEMATICA
b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[k]]], {k, 1, Length[w]}]; p = FromDigits[Reverse[a]]; AppendTo[b, First[Last[FactorInteger[p]]]], {n, 1, 31}]; b (* Artur Jasinski, Apr 04 2008 *)
lst = {}; Table[First[Last[FactorInteger[FromDigits[Reverse[lst = Join[lst, IntegerDigits[n]]]]]]], {n, 1, 10}] (* Robert Price, Mar 22 2015 *)
PROG
(PARI)
f(n) = my(D = Vec(concat(apply(s->Str(s), [1..n])))); eval(concat(vector(#D, k, D[#D-k+1]))); \\ A138793
a(n) = if(n == 1, 1, vecmax(factor(f(n))[, 1])); \\ Daniel Suteu, May 26 2022
KEYWORD
nonn,base
AUTHOR
Artur Jasinski, Apr 04 2008
STATUS
approved