login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355421
Expansion of e.g.f. exp(Sum_{k=1..3} (exp(k*x) - 1)).
1
1, 6, 50, 504, 5870, 76872, 1111646, 17522664, 298133054, 5433157512, 105396184478, 2165189912040, 46901678992958, 1067332196912136, 25435754924426270, 633014456504059368, 16411191933603611198, 442258823578968351624
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} (1 + 2^k + 3^k) * binomial(n-1,k-1) * a(n-k).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, 3, exp(k*x)-1))))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (1+2^j+3^j)*binomial(i-1, j-1)*v[i-j+1])); v;
CROSSREFS
Column k=3 of A355423.
Sequence in context: A365189 A303562 A125558 * A005416 A300989 A105617
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 01 2022
STATUS
approved