login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133333
Irregular triangle read by rows: coefficients of Olinde Rodrigues recursive polynomial for inversions of permutations applied to Bonnaci type polynomials: x - 1, x^2 - x - 1, x^3 - x^2 - x - 1, etc.
0
-1, 1, -1, 3, -3, 1, 1, 4, 2, -8, -5, 8, 2, -4, 1, -1, -5, -15, -25, -25, -1, 25, 35, 5, -15, -21, 5, 5, 5, -5, 1, 1, 6, 21, 56, 114, 186, 246, 246, 171, 34, -114, -174, -149, -54, 54, 66, 51, 6, -34, -6, -6, 4, 9, -6, 1, -1, -7, -28, -84, -210, -448, -833, -1373, -2023, -2653, -3094, -3178, -2793, -1953, -883, 161, 917, 1197
OFFSET
1,4
COMMENTS
The polynomial powers grow as I(n) = n!*binomial(n,2)/2.
LINKS
Warren P. Johnson, Mathematics and Social Utopias in France: Olinde Rodrigues and His times by Simon Altmann; Eduardo L. Ortiz, American Math. Monthly, Oct 2007, volume 114, number 8, pages 752-758.
EXAMPLE
{-1},
{1},
{-1, 3, -3, 1},
{1, 4, 2, -8, -5, 8, 2, -4, 1},
{-1, -5, -15, -25, -25, -1, 25, 35, 5, -15, -21, 5, 5, 5, -5, 1},
{1, 6, 21, 56, 114, 186, 246, 246, 171, 34, -114, -174, -149, -54, 54, 66, 51, 6, -34, -6, -6, 4, 9, -6,1},
{-1, -7, -28, -84, -210, -448, -833, -1373, -2023, -2653, -3094, -3178, -2793, -1953, -883, 161, 917, 1197, 987, 567,91, -253, -343, -203, -98, 28, 91, 63, -15, 7, -14, -14, 0, 14, -7, 1},
MATHEMATICA
f[q_, n_] = If[n == 0, -1, q^(n - 1) - Sum[q^i, {i, 0, n - 2}]]; g[q_, n_] = Product[f[q, n], {m, 0, n}]; a = Table[CoefficientList[g[x, n], x], {n, 0, 10}]; Flatten[a]
CROSSREFS
Sequence in context: A197928 A109439 A247646 * A296523 A171876 A306462
KEYWORD
uned,sign,tabf
AUTHOR
Roger L. Bagula, Oct 19 2007
STATUS
approved