login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A133330 Sums of exactly three positive octahedral numbers A005900. 1
3, 8, 13, 18, 21, 26, 31, 39, 44, 46, 51, 56, 57, 64, 69, 82, 87, 89, 92, 94, 97, 105, 107, 110, 123, 130, 132, 135, 148, 153, 158, 166, 171, 173, 176, 184, 189, 191, 196, 209, 214, 232, 233, 234, 237, 238, 243, 250, 251, 255, 256, 269, 275, 276, 281, 293, 294 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

Dickson, L. E. History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, 2005, cites the Pollock reference.

Pollock, F. "On the Extension of the Principle of Fermat's Theorem of the Polygonal Numbers to the Higher Orders of Series Whose Ultimate Differences Are Constant. With a New Theorem Proposed, Applicable to All the Orders." Abs. Papers Commun. Roy. Soc. London 5, 922-924, 1843-1850.

LINKS

Table of n, a(n) for n=1..57.

Agustin Moreno Canadas, On sums of figurate numbers by using techniques of poset representation theory, arXiv:0806.2486 [math.NT], 2008.

MATHEMATICA

lim = 300; oc[n_] := (2*n^3 + n)/3; nmax = Floor[Solve[oc[n] + oc[1] + oc[1] == lim, n][[1, 1, 2]]]; t = Table[ oc[n], {n, nmax}]; Select[ Union[ Flatten[ Outer[ Plus, t, t, t]]], # <= lim &] (* Jean-Fran├žois Alcover, Sep 08 2011 *)

CROSSREFS

Cf. A005900, A053676, A053677, A053678.

Sequence in context: A197062 A010064 A310304 * A190505 A310305 A184921

Adjacent sequences:  A133327 A133328 A133329 * A133331 A133332 A133333

KEYWORD

easy,nonn

AUTHOR

Jonathan Vos Post, Oct 18 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 7 12:01 EDT 2022. Contains 355985 sequences. (Running on oeis4.)