login
A053676
Let Oc(n) = A005900(n) = n-th octahedral number. Consider all integer triples (i,j,k), j >= k > 0, with Oc(i) = Oc(j)+Oc(k), ordered by increasing i; sequence gives i values.
5
7, 41, 465, 2732, 3005, 20648, 48125, 94396, 129299, 282931, 789281, 835050, 1241217, 1292143, 1521647, 1603655, 2756953, 4847702, 5128447, 6242598
OFFSET
1,1
COMMENTS
a(21) > 10^7. - Donovan Johnson, Sep 29 2010
REFERENCES
Pollock, F. "On the Extension of the Principle of Fermat's Theorem of the Polygonal Numbers to the Higher Orders of Series Whose Ultimate Differences Are Constant. With a New Theorem Proposed, Applicable to All the Orders." Abs. Papers Commun. Roy. Soc. London 5, 922-924, 1843-1850.
Dickson, L. E., History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, 2005, cites the Pollock reference.
EXAMPLE
Oc(7) = 231 = Oc(6) + Oc(5); Oc(41) = 45961 = Oc(40) + Oc(17); Oc(465) = 67029905 = Oc(454) + Oc(191)
CROSSREFS
Cf. A005900, A053677 (j values), A053678 (k values).
Sequence in context: A146991 A377347 A356129 * A002701 A057006 A144747
KEYWORD
nice,nonn
AUTHOR
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 16 2000
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), May 07 2001
a(13)-a(16) from Donovan Johnson, Jun 21 2010
a(17)-a(20) from Donovan Johnson, Sep 29 2010
STATUS
approved