

A133329


85 prism graph substitution ( of twelve tone type): a square connected to an octagon to give a figure with a C4 rotational axis.


0



1, 3, 6, 7, 1, 3, 10, 11, 6, 12, 1, 5, 11, 2, 1, 3, 6, 7, 1, 3, 10, 11, 7, 9, 3, 8, 10, 3, 6, 12, 1, 6, 8, 2, 1, 3, 6, 7, 5, 7, 2, 7, 9, 3, 1, 3, 6, 7, 1, 3, 6, 7, 1, 3, 10, 11, 6, 12, 1, 5, 11, 2, 1, 3, 6, 7, 1, 3, 10, 11, 7, 9, 3, 8, 10, 3, 8, 10, 3, 10, 12, 4, 1, 3, 10, 11, 9, 11, 4, 5, 11, 2, 1, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The sequence of the 12 vertex prisms I have done is: {6,6}>{7,5}>{8,4}


LINKS

Table of n, a(n) for n=1..94.


FORMULA

1> {2, 4, 5, 12}; 2> {1, 3, 6, 7}; 3> {2, 4,8, 9}; 4>{1, 3, 10, 11}; 5>{6, 12, 1}; 6>{5, 7, 2}; 7>{6, 8, 2}; 8>{7, 9, 3}; 9>{8, 10, 3}; 10>{9, 11, 4}; 11>{10, 12, 4}; 12>{5, 11, 2};


MATHEMATICA

Clear[s] s[1] = {2, 4, 5, 12}; s[2] = {1, 3, 6, 7}; s[3] = {2, 4, 8, 9}; s[4] = {1, 3, 10, 11}; s[5] = {6, 12, 1}; s[6] = {5, 7, 2}; s[7] = {6, 8, 2}; s[8] = {7, 9, 3}; s[9] = {8, 10, 3}; s[10] = {9, 11, 4}; s[11] = {10, 12, 4}; s[12] = {5, 11, 2}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n  1]]; p[4]


CROSSREFS

Sequence in context: A032338 A081814 A133340 * A275696 A080260 A065269
Adjacent sequences: A133326 A133327 A133328 * A133330 A133331 A133332


KEYWORD

nonn,uned


AUTHOR

Roger L. Bagula, Oct 18 2007


STATUS

approved



