

A133340


A twelve vertex {3,6,3} prism (hexagon connected to two triangles) graph substitution.


0



1, 3, 6, 7, 1, 2, 8, 9, 1, 5, 9, 12, 1, 4, 6, 10, 2, 3, 4, 5, 1, 3, 6, 7, 3, 7, 9, 11, 3, 4, 8, 12, 1, 3, 6, 7, 1, 4, 6, 10, 2, 6, 8, 11, 5, 6, 11, 12, 1, 3, 6, 7, 2, 5, 7, 10, 3, 7, 9, 11, 7, 8, 10, 12, 1, 3, 6, 7, 1, 2, 8, 9, 1, 5, 9, 12, 1, 4, 6, 10, 2, 3, 4, 5, 1, 2, 8, 9, 2, 5, 7, 10, 2, 6, 8, 11, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Although designed to be similar to the {9,3} Prism in shape the {3,6,3} polyhedron sounds better to my ear.


LINKS

Table of n, a(n) for n=1..97.


FORMULA

1>{2, 3, 4, 5}; 2> {1, 3, 6, 7}; 3> {1, 2, 8, 9}; 4> {1, 5, 9, 12}; 5> {1, 4, 6, 10}; 6> {2, 5, 7, 10}; 7> {2, 6, 8, 11}; 8> {3, 7, 9, 11}; 9> {3, 4, 8, 12}; 10> {5, 6, 11, 12}; 11> {7, 8, 10, 12}; 12> {4, 9, 10, 11};


MATHEMATICA

Clear[s] s[1] = {2, 3, 4, 5}; s[2] = {1, 3, 6, 7}; s[3] = {1, 2, 8, 9}; s[ 4] = {1, 5, 9, 12}; s[5] = {1, 4, 6, 10}; s[6] = {2, 5, 7, 10}; s[7] = {2, 6, 8, 11}; s[8] = {3, 7, 9, 11}; s[9] = {3, 4, 8, 12}; s[10] = {5, 6, 11, 12}; s[11] = {7, 8, 10, 12}; s[12] = {4, 9, 10, 11}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n  1]]; p[4]


CROSSREFS

Sequence in context: A137497 A032338 A081814 * A133329 A275696 A080260
Adjacent sequences: A133337 A133338 A133339 * A133341 A133342 A133343


KEYWORD

nonn,uned


AUTHOR

Roger L. Bagula, Oct 19 2007


STATUS

approved



