Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Sep 11 2024 05:49:47
%S 1,1,2,6,19,64,225,816,3031,11473,44096,171631,675130,2679728,
%T 10719237,43168826,174885089,712222799,2914150406,11973792218,
%U 49385167369,204386777160,848530495383,3532844222611,14747626307436,61712139464939
%N G.f. satisfies A(x) = 1 + x*A(x)^2 + x^2*(A(x)^2 - A(x)).
%C Equals base sequence of pendular trinomial triangle A119369; iterated convolutions of this sequence with the central terms (A119371) generates all diagonals of A119369. For example: A119372 = A119370 * A119371; A119373 = A119370^2 * A119371.
%C Diagonal sums of number array A133336. - _Philippe Deléham_, Nov 09 2009
%H G. C. Greubel, <a href="/A119370/b119370.txt">Table of n, a(n) for n = 0..1000</a>
%H Stoyan Dimitrov, <a href="https://arxiv.org/abs/2002.12322">On permutation patterns with constrained gap sizes</a>, arXiv:2002.12322 [math.CO], 2020.
%H Hannah Golab, <a href="http://danaernst.com/scholarship/GolabThesis.pdf">Pattern avoidance in Cayley permutations</a>, Master's Thesis, Northern Arizona Univ. (2024). See p. 41.
%F G.f.: A(x) = ((1+x^2) - sqrt( (1+x^2)^2 - 4*x*(1+x) ))/(2*x*(1+x)). Equals the inverse binomial transform of A104547.
%F Recurrence: (n+1)*a(n) = 3*(n-1)*a(n-1) + 6*(n-1)*a(n-2) + 2*(n-2)*a(n-3) - (n-5)*a(n-4) - (n-5)*a(n-5). - _Vaclav Kotesovec_, Sep 11 2013
%F a(n) ~ sqrt(-z^2-3*z+1)*(4+2*z-z^3)^(n+1)*(-z^3+z^2+z+3) / (8*sqrt(Pi) * n^(3/2)), where z = 1/(2*sqrt(3/(4+(280-24*sqrt(129))^(1/3) + 2*(35 + 3*sqrt(129))^(1/3)))) - 1/2*sqrt(8/3-1/3*(280-24*sqrt(129))^(1/3) - 2/3*(35+3*sqrt(129))^(1/3) + 8*sqrt(3/(4+(280-24*sqrt(129))^(1/3) + 2*(35 + 3*sqrt(129))^(1/3)))) = 0.225270426... is the root of the equation 1-2*z^2+z^4-4*z=0. - _Vaclav Kotesovec_, Sep 11 2013
%F G.f.: 1/G(0) where G(k) = 1 - q/(1 - (q + q^2) / G(k+1) ). - _Joerg Arndt_, Dec 06 2014
%F a(n) = Sum_{k=0..floor(n/2)} binomial(n-k-1,k) * binomial(2*n-3*k+1,n-2*k)/(2*n-3*k+1). - _Seiichi Manyama_, Aug 28 2023
%F Conjecture: A(x) = 1 + x*exp(Sum_{n >= 1} g(n, x)*x^n/n), where g(n, x) = Sum_{k = 0..n} binomial(n, k)^2*(1 + x)^k. Cf. A105633 and A167638. - _Peter Bala_, Sep 10 2024
%e A(x) = 1 + x + 2*x^2 + 6*x^3 + 19*x^4 + 64*x^5 + 225*x^6 + 816*x^7 +...
%e x*A(x)^2 = x + 2*x^2 + 5*x^3 + 16*x^4 + 54*x^5 + 190*x^6 + 690*x^7 +...
%e x^2*( A(x)^2 - A(x) ) = 1*x^3 + 3*x^4 + 10*x^5 + 35*x^6 + 126*x^7 +...
%p m:= 30;
%p S:= series( (1+x^2 -sqrt(1-4*x-2*x^2+x^4))/(2*x*(1+x)), x, m+1);
%p seq(coeff(S, x, j), j = 0..m); # _G. C. Greubel_, Mar 17 2021
%t CoefficientList[Series[((1+x^2)-Sqrt[(1+x^2)^2-4*x*(1+x)])/(2*x*(1+x)), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Sep 11 2013 *)
%o (PARI) {a(n)=polcoeff(2/((1+x^2)+sqrt((1+x^2)^2-4*x*(1+x)+x*O(x^n))),n)}
%o (Sage)
%o def A119370_list(prec):
%o P.<x> = PowerSeriesRing(QQ, prec)
%o return P( (1+x^2 -sqrt(1-4*x-2*x^2+x^4))/(2*x*(1+x)) ).list()
%o A119370_list(30) # _G. C. Greubel_, Mar 17 2021
%o (Magma)
%o R<x>:=PowerSeriesRing(Rationals(), 30);
%o Coefficients(R!( (1+x^2 -Sqrt(1-4*x-2*x^2+x^4))/(2*x*(1+x)) )); // _G. C. Greubel_, Mar 17 2021
%Y Cf. A104547, A119369, A119371, A119372, A119373, A119374, A119375, A119376.
%K nonn,easy
%O 0,3
%A _Paul D. Hanna_, May 16 2006