login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178449
Conjectured expansion of exp(Pi*sqrt(163)) in powers of t, where t = 1/(640320)^3.
0
1, 744, -196884, 167975456, -180592706130, 217940004309743, -19517553165954887, 74085136650518742, -131326907606533204
OFFSET
-1,2
COMMENTS
R. W. Gosper asks if the coefficients are well-defined. Until this is answered, the sequence is only conjectural. This sequence is very close to A178451, but presumably different from it.
REFERENCES
R. W. Gosper, Posting to the Math Fun Mailing List, Dec 21 2010
EXAMPLE
e^(Pi*sqrt(163)) = s^3 + 744 - 196884/s^3 + 167975456/s^6 - 180592706130/s^9 + 217940004309743/s^12 - 19517553165954887/s^15 + 74085136650518742/s^18 - ... where s = 640320. Now set t = 1/s^3.
PROG
(bc)
/* GNU bc code, computes a(0) through a(7) */
define trunc(x) { auto sc, t; sc=scale; scale=0; t=x/1; scale=sc; return(t) }
scale = 200; pi = 4 * a(1); r = e(pi * sqrt(163)); s = 640320;
c0 = 1 + trunc(r - s^3);
c1 = -1 - trunc(((s^3 + c0) - r) * s^3);
c2 = 1 + trunc((r - (s^3 + c0 + c1/s^3)) * s^6);
c3 = -1 - trunc(((s^3 + c0 + c1/s^3 + c2/s^6) - r) * s^9);
c4 = 1 + trunc((r - (s^3 + c0 + c1/s^3 + c2/s^6 + c3/s^9)) * s^12);
c5 = -1 - trunc(((s^3 + c0 + c1/s^3 + c2/s^6 + c3/s^9 + c4/s^12) - r) * s^15);
c6 = 1 + trunc((r - (s^3 + c0 + c1/s^3 + c2/s^6 + c3/s^9 + c4/s^12 + c5/s^15)) * s^18);
c7 = -1 - trunc(((s^3 + c0 + c1/s^3 + c2/s^6 + c3/s^9 + c4/s^12 + c5/s^15 + c6/s^18) - r) * s^21);
CROSSREFS
KEYWORD
sign,more
AUTHOR
N. J. A. Sloane, Dec 22 2010, based on a posting by R. W. Gosper to the Sequence Fans Mailing List, Dec 21 2010
EXTENSIONS
Cullen link, bc code, and a(8) from Robert Munafo, Dec 23 2010
STATUS
approved