login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A178452 Partial sums of floor(2^n/5). 1
0, 0, 1, 4, 10, 22, 47, 98, 200, 404, 813, 1632, 3270, 6546, 13099, 26206, 52420, 104848, 209705, 419420, 838850, 1677710, 3355431, 6710874, 13421760, 26843532, 53687077, 107374168, 214748350, 429496714, 858993443, 1717986902 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Partial sums of A077854(n-3).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.

Index entries for linear recurrences with constant coefficients, signature (4,-6,6,-5,2).

FORMULA

a(n) = round((4*2^n - 5*n - 5)/10).

a(n) = floor((4*2^n - 5*n - 3)/10).

a(n) = ceiling((4*2^n - 5*n - 7)/10).

a(n) = round((4*2^n - 5*n - 4)/10).

a(n) = a(n-4) + 3*2^(n-3) - 2, n > 4.

From Bruno Berselli, Jan 18 2011: (Start)

G.f.:  x^3/((1-2*x)*(1+x^2)*(1-x)^2).

a(n) = (4*2^n - 5*n - 5 + A057077(n)*A000034(n))/10.

a(n) = 3*a(n-1) - 2*a(n-2) + a(n-4) - 3*a(n-5) + 2*a(n-6) for n > 6. (End)

EXAMPLE

a(5) = 0 + 0 + 1 + 3 + 6 = 10.

MAPLE

seq(round((4*2^n-5*n-4)/10), n=1..50)

MATHEMATICA

CoefficientList[Series[x^2 / ((1 - 2 x) (1 + x^2) (1 - x)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *)

Accumulate[Floor[2^Range[40]/5]] (* or *) LinearRecurrence[{4, -6, 6, -5, 2}, {0, 0, 1, 4, 10}, 40] (* Harvey P. Dale, Oct 09 2018 *)

PROG

(MAGMA) [Floor((4*2^n-5*n-3)/10): n in [1..40]]; // Vincenzo Librandi, Jun 23 2011

CROSSREFS

Cf. A077854.

Sequence in context: A008267 A056112 A118430 * A324536 A137247 A155407

Adjacent sequences:  A178449 A178450 A178451 * A178453 A178454 A178455

KEYWORD

nonn,easy

AUTHOR

Mircea Merca, Dec 22 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 23:53 EDT 2021. Contains 347477 sequences. (Running on oeis4.)