login
A000518
Generalized tangent numbers d_(n,4).
(Formerly M5432 N2361)
5
272, 24611, 515086, 4456448, 23750912, 93241002, 296327464, 806453248, 1951153920, 4300685074, 8787223186, 16878338048, 30768878848, 53624926972, 89982082488, 146028888064, 230022888960, 353194774434, 529896144586
OFFSET
1,1
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. Shanks, Generalized Euler and class numbers. Math. Comp. 21 (1967) 689-694.
D. Shanks, Corrigenda to: "Generalized Euler and class numbers", Math. Comp. 22 (1968), 699
MATHEMATICA
amax = 20; km0 = 10; Clear[dd]; L[a_, s_, km_] := Sum[ JacobiSymbol[ -a, 2 k + 1]/(2 k + 1)^s, {k, 0, km}]; d[1, n_, km_] := 2 (2 n - 1)! L[-1, 2 n, km] (2/Pi)^(2 n) // Round; d[a_ /; a > 1, n_, km_] := (2 n - 1)! L[-a, 2 n, km] (2 a/Pi)^(2 n)/Sqrt[a] // Round; dd[km_] := dd[km] = Table[d[a, 4, km], {a, 1, amax}]; dd[km0]; dd[km = 2 km0]; While[dd[km] != dd[km/2, km = 2 km]]; A000518 = dd[km] (* Jean-François Alcover, Feb 09 2016 *)
CROSSREFS
Cf. A000061 for d_(n,1), A000176 for d_(n,2), A000488 for d_(n,3).
Sequence in context: A023907 A281691 A035842 * A230531 A283230 A280044
KEYWORD
nonn
EXTENSIONS
More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 03 2000
STATUS
approved