login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143682 a(n) = (prime(n)^4 - prime(n^4))/2, where prime(n) is the n-th prime. 2
7, 14, 103, 391, 5002, 8967, 31065, 45724, 107077, 301276, 382000, 820141, 1246909, 1479730, 2129740, 3534420, 5523879, 6237871, 9209731, 11625564, 12865129, 17844972, 21754756, 28999632, 41437737, 48684207, 52341667, 60941856 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..750

EXAMPLE

a(1) = (prime(1)^2^2 - prime(1^2^2))/2 = (16 - 2)/2 = 14/2 = 7,

a(2) = (prime(2)^2^2 - prime(2^2^2))/2 = (81 - 53)/2 = 28/2 = 14,

a(3) = (prime(3)^2^2 - prime(3^2^2))/2 = (625 - 419)/2 = 206/2 = 103,

a(4) = (prime(4)^2^2 - prime(4^2^2))/2 = (2401 - 1619)/2 = 782/2 = 391 = a(4),

a(5) = (prime(5)^2^2 - prime(5^2^2))/2 = (14641 - 4637)/2 = 10004/2 = 5002,

etc.

MAPLE

A143682 := proc(n) (ithprime(n)^4-ithprime(n^4))/2 ; end: for n from 1 to 50 do printf("%d, ", A143682(n)) ; od: # R. J. Mathar, Nov 05 2008

MATHEMATICA

Table[(Prime[n]^4 - Prime[n^4])/2, {n, 40}] (* G. C. Greubel, May 29 2021 *)

PROG

(PARI) a(n) = (prime(n)^4 - prime(n^4))/2; \\ Michel Marcus, Oct 05 2015

(MAGMA) [(NthPrime(n)^4 - NthPrime(n^4))/2: n in [1..30]]; // Vincenzo Librandi, Oct 05 2015

(Sage) [(nth_prime(n)^4 - nth_prime(n^4))/2 for n in (1..40)] # G. C. Greubel, May 29 2021

CROSSREFS

Cf. A000040.

Cf. A030514, A109791. - R. J. Mathar, Nov 05 2008

Sequence in context: A291008 A196254 A173167 * A080451 A346534 A061522

Adjacent sequences:  A143679 A143680 A143681 * A143683 A143684 A143685

KEYWORD

nonn

AUTHOR

Juri-Stepan Gerasimov, Nov 01 2008

EXTENSIONS

More terms from R. J. Mathar, Nov 05 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 06:13 EDT 2021. Contains 347623 sequences. (Running on oeis4.)