login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143682
a(n) = (prime(n)^4 - prime(n^4))/2, where prime(n) is the n-th prime.
2
7, 14, 103, 391, 5002, 8967, 31065, 45724, 107077, 301276, 382000, 820141, 1246909, 1479730, 2129740, 3534420, 5523879, 6237871, 9209731, 11625564, 12865129, 17844972, 21754756, 28999632, 41437737, 48684207, 52341667, 60941856
OFFSET
1,1
LINKS
EXAMPLE
a(1) = (prime(1)^2^2 - prime(1^2^2))/2 = (16 - 2)/2 = 14/2 = 7,
a(2) = (prime(2)^2^2 - prime(2^2^2))/2 = (81 - 53)/2 = 28/2 = 14,
a(3) = (prime(3)^2^2 - prime(3^2^2))/2 = (625 - 419)/2 = 206/2 = 103,
a(4) = (prime(4)^2^2 - prime(4^2^2))/2 = (2401 - 1619)/2 = 782/2 = 391 = a(4),
a(5) = (prime(5)^2^2 - prime(5^2^2))/2 = (14641 - 4637)/2 = 10004/2 = 5002,
etc.
MAPLE
A143682 := proc(n) (ithprime(n)^4-ithprime(n^4))/2 ; end: for n from 1 to 50 do printf("%d, ", A143682(n)) ; od: # R. J. Mathar, Nov 05 2008
MATHEMATICA
Table[(Prime[n]^4 - Prime[n^4])/2, {n, 40}] (* G. C. Greubel, May 29 2021 *)
PROG
(PARI) a(n) = (prime(n)^4 - prime(n^4))/2; \\ Michel Marcus, Oct 05 2015
(Magma) [(NthPrime(n)^4 - NthPrime(n^4))/2: n in [1..30]]; // Vincenzo Librandi, Oct 05 2015
(Sage) [(nth_prime(n)^4 - nth_prime(n^4))/2 for n in (1..40)] # G. C. Greubel, May 29 2021
CROSSREFS
Cf. A000040.
Cf. A030514, A109791. - R. J. Mathar, Nov 05 2008
Sequence in context: A291008 A196254 A173167 * A369562 A080451 A346534
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from R. J. Mathar, Nov 05 2008
STATUS
approved