OFFSET
0,5
LINKS
G. C. Greubel, Antidiagonal rows n = 0..50, flattened
FORMULA
Square array: T(n, k) = T(n, k-1) + 9*T(n-1, k-1) + T(n-1, k) with T(n, 0) = T(0, k) = 1.
Number triangle: T(n,k) = Sum_{j=0..n-k} binomial(n-k,j)*binomial(k,j)*10^j.
Riordan array (1/(1-x), x*(1+9*x)/(1-x)).
T(n, k) = Hypergeometric2F1([-k, k-n], [1], 10). - Jean-François Alcover, May 24 2013
Sum_{k=0..n} T(n, k) = A002534(n+1). - G. C. Greubel, May 29 2021
EXAMPLE
Square array begins as:
1, 1, 1, 1, 1, 1, 1, ... A000012;
1, 11, 21, 31, 41, 51, 61, ... A017281;
1, 21, 141, 361, 681, 1101, 1621, ...
1, 31, 361, 1991, 5921, 13151, 24681, ...
1, 41, 681, 5921, 29761, 96201, 239241, ...
1, 51, 1101, 13151, 96201, 460251, 1565301, ...
1, 61, 1621, 24681, 239241, 1565301, 7272861, ...
Antidiagonal triangle begins as:
1;
1, 1;
1, 11, 1;
1, 21, 21, 1;
1, 31, 141, 31, 1;
1, 41, 361, 361, 41, 1;
1, 51, 681, 1991, 681, 51, 1;
1, 61, 1101, 5921, 5921, 1101, 61, 1;
1, 71, 1621, 13151, 29761, 13151, 1621, 71, 1;
MATHEMATICA
Table[Hypergeometric2F1[-k, k-n, 1, 10], {n, 0, 12}, {k, 0, n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
PROG
(Magma)
A143685:= func< n, k, q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
[A143685(n, k, 9): k in [0..n], n in [0..12]]; // G. C. Greubel, May 29 2021
(Sage) flatten([[hypergeometric([-k, k-n], [1], 10).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 29 2021
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Aug 28 2008
STATUS
approved