login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143685
Pascal-(1,9,1) array.
1
1, 1, 1, 1, 11, 1, 1, 21, 21, 1, 1, 31, 141, 31, 1, 1, 41, 361, 361, 41, 1, 1, 51, 681, 1991, 681, 51, 1, 1, 61, 1101, 5921, 5921, 1101, 61, 1, 1, 71, 1621, 13151, 29761, 13151, 1621, 71, 1, 1, 81, 2241, 24681, 96201, 96201, 24681, 2241, 81, 1, 1, 91, 2961, 41511, 239241, 460251, 239241, 41511, 2961, 91, 1
OFFSET
0,5
FORMULA
Square array: T(n, k) = T(n, k-1) + 9*T(n-1, k-1) + T(n-1, k) with T(n, 0) = T(0, k) = 1.
Number triangle: T(n,k) = Sum_{j=0..n-k} binomial(n-k,j)*binomial(k,j)*10^j.
Riordan array (1/(1-x), x*(1+9*x)/(1-x)).
T(n, k) = Hypergeometric2F1([-k, k-n], [1], 10). - Jean-François Alcover, May 24 2013
Sum_{k=0..n} T(n, k) = A002534(n+1). - G. C. Greubel, May 29 2021
EXAMPLE
Square array begins as:
1, 1, 1, 1, 1, 1, 1, ... A000012;
1, 11, 21, 31, 41, 51, 61, ... A017281;
1, 21, 141, 361, 681, 1101, 1621, ...
1, 31, 361, 1991, 5921, 13151, 24681, ...
1, 41, 681, 5921, 29761, 96201, 239241, ...
1, 51, 1101, 13151, 96201, 460251, 1565301, ...
1, 61, 1621, 24681, 239241, 1565301, 7272861, ...
Antidiagonal triangle begins as:
1;
1, 1;
1, 11, 1;
1, 21, 21, 1;
1, 31, 141, 31, 1;
1, 41, 361, 361, 41, 1;
1, 51, 681, 1991, 681, 51, 1;
1, 61, 1101, 5921, 5921, 1101, 61, 1;
1, 71, 1621, 13151, 29761, 13151, 1621, 71, 1;
MATHEMATICA
Table[Hypergeometric2F1[-k, k-n, 1, 10], {n, 0, 12}, {k, 0, n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
PROG
(Magma)
A143685:= func< n, k, q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
[A143685(n, k, 9): k in [0..n], n in [0..12]]; // G. C. Greubel, May 29 2021
(Sage) flatten([[hypergeometric([-k, k-n], [1], 10).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 29 2021
CROSSREFS
Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081579 (m = 4), A081580 (m = 5), A081581 (m = 6), A081582 (m = 7), A143683 (m = 8), this sequence (m = 9).
Sequence in context: A214326 A105769 A157171 * A168647 A202767 A060270
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Aug 28 2008
STATUS
approved