Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Sep 08 2022 08:45:37
%S 1,1,1,1,11,1,1,21,21,1,1,31,141,31,1,1,41,361,361,41,1,1,51,681,1991,
%T 681,51,1,1,61,1101,5921,5921,1101,61,1,1,71,1621,13151,29761,13151,
%U 1621,71,1,1,81,2241,24681,96201,96201,24681,2241,81,1,1,91,2961,41511,239241,460251,239241,41511,2961,91,1
%N Pascal-(1,9,1) array.
%H G. C. Greubel, <a href="/A143685/b143685.txt">Antidiagonal rows n = 0..50, flattened</a>
%F Square array: T(n, k) = T(n, k-1) + 9*T(n-1, k-1) + T(n-1, k) with T(n, 0) = T(0, k) = 1.
%F Number triangle: T(n,k) = Sum_{j=0..n-k} binomial(n-k,j)*binomial(k,j)*10^j.
%F Riordan array (1/(1-x), x*(1+9*x)/(1-x)).
%F T(n, k) = Hypergeometric2F1([-k, k-n], [1], 10). - _Jean-François Alcover_, May 24 2013
%F Sum_{k=0..n} T(n, k) = A002534(n+1). - _G. C. Greubel_, May 29 2021
%e Square array begins as:
%e 1, 1, 1, 1, 1, 1, 1, ... A000012;
%e 1, 11, 21, 31, 41, 51, 61, ... A017281;
%e 1, 21, 141, 361, 681, 1101, 1621, ...
%e 1, 31, 361, 1991, 5921, 13151, 24681, ...
%e 1, 41, 681, 5921, 29761, 96201, 239241, ...
%e 1, 51, 1101, 13151, 96201, 460251, 1565301, ...
%e 1, 61, 1621, 24681, 239241, 1565301, 7272861, ...
%e Antidiagonal triangle begins as:
%e 1;
%e 1, 1;
%e 1, 11, 1;
%e 1, 21, 21, 1;
%e 1, 31, 141, 31, 1;
%e 1, 41, 361, 361, 41, 1;
%e 1, 51, 681, 1991, 681, 51, 1;
%e 1, 61, 1101, 5921, 5921, 1101, 61, 1;
%e 1, 71, 1621, 13151, 29761, 13151, 1621, 71, 1;
%t Table[Hypergeometric2F1[-k, k-n, 1, 10], {n,0,12}, {k,0,n}]//Flatten (* _Jean-François Alcover_, May 24 2013 *)
%o (Magma)
%o A143685:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
%o [A143685(n,k,9): k in [0..n], n in [0..12]]; // _G. C. Greubel_, May 29 2021
%o (Sage) flatten([[hypergeometric([-k, k-n], [1], 10).simplify() for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, May 29 2021
%Y Cf. A002534, A143680, A143682.
%Y Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081579 (m = 4), A081580 (m = 5), A081581 (m = 6), A081582 (m = 7), A143683 (m = 8), this sequence (m = 9).
%K easy,nonn,tabl
%O 0,5
%A _Paul Barry_, Aug 28 2008