login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (prime(n)^4 - prime(n^4))/2, where prime(n) is the n-th prime.
2

%I #18 Sep 08 2022 08:45:37

%S 7,14,103,391,5002,8967,31065,45724,107077,301276,382000,820141,

%T 1246909,1479730,2129740,3534420,5523879,6237871,9209731,11625564,

%U 12865129,17844972,21754756,28999632,41437737,48684207,52341667,60941856

%N a(n) = (prime(n)^4 - prime(n^4))/2, where prime(n) is the n-th prime.

%H G. C. Greubel, <a href="/A143682/b143682.txt">Table of n, a(n) for n = 1..750</a>

%e a(1) = (prime(1)^2^2 - prime(1^2^2))/2 = (16 - 2)/2 = 14/2 = 7,

%e a(2) = (prime(2)^2^2 - prime(2^2^2))/2 = (81 - 53)/2 = 28/2 = 14,

%e a(3) = (prime(3)^2^2 - prime(3^2^2))/2 = (625 - 419)/2 = 206/2 = 103,

%e a(4) = (prime(4)^2^2 - prime(4^2^2))/2 = (2401 - 1619)/2 = 782/2 = 391 = a(4),

%e a(5) = (prime(5)^2^2 - prime(5^2^2))/2 = (14641 - 4637)/2 = 10004/2 = 5002,

%e etc.

%p A143682 := proc(n) (ithprime(n)^4-ithprime(n^4))/2 ; end: for n from 1 to 50 do printf("%d,",A143682(n)) ; od: # _R. J. Mathar_, Nov 05 2008

%t Table[(Prime[n]^4 - Prime[n^4])/2, {n, 40}] (* _G. C. Greubel_, May 29 2021 *)

%o (PARI) a(n) = (prime(n)^4 - prime(n^4))/2; \\ _Michel Marcus_, Oct 05 2015

%o (Magma) [(NthPrime(n)^4 - NthPrime(n^4))/2: n in [1..30]]; // _Vincenzo Librandi_, Oct 05 2015

%o (Sage) [(nth_prime(n)^4 - nth_prime(n^4))/2 for n in (1..40)] # _G. C. Greubel_, May 29 2021

%Y Cf. A000040.

%Y Cf. A030514, A109791. - _R. J. Mathar_, Nov 05 2008

%K nonn

%O 1,1

%A _Juri-Stepan Gerasimov_, Nov 01 2008

%E More terms from _R. J. Mathar_, Nov 05 2008