login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123559
a(n) is the smallest integer such that 1/a(1)^2 + 1/a(2)^2 + ... + 1/a(n-1)^2 + 1/a(n)^2 is less than Pi.
0
1, 1, 1, 3, 6, 20, 71, 431, 11111, 1096517, 3060614764, 139873870750394, 2228164248308209927663, 137936736998106949095632586591612, 1537967284879934603600637815040145351018766857006
OFFSET
1,4
FORMULA
a(n) = ceiling(sqrt(Pi - Sum_{i=1..n-1} 1/a(i)^2)).
EXAMPLE
a(4)=3 because Pi - 1/a(1)^2 - 1/a(2)^2 - 1/a(3)^2 = Pi - 1 - 1 - 1 = 0.1415926... and 3 is the smallest integer such that 1/3^2 = 0.1111111... < 0.1415926...
PROG
(PARI) f(x)=ceil(sqrt(1/x))
lista(n)={my(k=Pi, v=vector(n)); for(T=1, n, v[T]= f(k); k-=1/v[T]^2); v}
CROSSREFS
Sequence in context: A090371 A288817 A168594 * A334329 A162171 A194992
KEYWORD
nonn
AUTHOR
Hauke Worpel (hw1(AT)email.com), Nov 11 2006
STATUS
approved