login
A162171
Third column of A162170.
1
1, 3, 6, 20, 75, 336, 1708, 9792, 62325, 436480, 3334386, 27595776, 245951615, 2348666880, 23923317720, 258910994432, 2966901358185, 35886973648896, 456927138333790, 6108665873694720, 85555744482868275, 1252729007440396288, 19140289332506060676
OFFSET
1,2
LINKS
J. A. Palacios, A. Bhaskar, F. Disanto and N. A. Rosenberg, Enumeration of binary trees compatible with a perfect phylogeny, J. Math. Biol. 84 (2022), 54.
FORMULA
a(n) = Sum_{k=1..floor(n/2)} (-1)^(floor(n/2)+k) * binomial(n+1, 2*k) * a(2*k-1) for n > 1. - Mike Tryczak, Jun 18 2015
a(n) = n*(n+1)/2 * A000111(n-1) (conjectured). - Mike Tryczak, Jun 17 2015
The above conjecture by Tryczak is correct. With an offset of 2, the e.g.f. is x^2/2!*(sec(x) + tan(x)). - Peter Bala, Sep 08 2021
a(n) is the number of ranked unlabeled binary tree shapes compatible with the binary perfect phylogeny (n,3). - Noah A Rosenberg, Jun 03 2022
PROG
(PARI) T(n, k) = if (k % 2, binomial(n-1, k-1) * (-1)^floor((n+k-1)/2), if (n==k, 1 , 0));
lista(nn) = {m = matrix(nn, nn, n, k, if (n>=k, T(n, k), 0)); m = m^(-1); for (n=3, nn, print1(m[n, 3], ", ")); } \\ Michel Marcus, Jun 17 2015
(PARI) lista(nn) = { a = [1]; for(n = 2, nn, a = concat(a, sum(k = 1, j = floor(n/2), (-1)^(j+k) * binomial(n+1, 2*k) * a[2*k-1]))); print(a) } \\ Mike Tryczak, Jun 18 2015
CROSSREFS
Sequence in context: A168594 A123559 A334329 * A194992 A163881 A238474
KEYWORD
nonn,easy
AUTHOR
Mats Granvik, Jun 27 2009
EXTENSIONS
Sequence corrected and extended by Mike Tryczak, Jun 17 2015
STATUS
approved