login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Pascal-(1,-3,1) array, read by antidiagonals.
11

%I #25 Oct 16 2017 02:04:15

%S 1,1,1,1,-1,1,1,-3,-3,1,1,-5,-3,-5,1,1,-7,1,1,-7,1,1,-9,9,11,9,-9,1,1,

%T -11,21,17,17,21,-11,1,1,-13,37,11,1,11,37,-13,1,1,-15,57,-15,-39,-39,

%U -15,57,-15,1,1,-17,81,-69,-87,-81,-87,-69,81,-17,1

%N Pascal-(1,-3,1) array, read by antidiagonals.

%C Riordan array (1/(1-x), x*(1-3x)/(1-x)).

%H G. C. Greubel, <a href="/A123562/b123562.txt">Table of n, a(n) for the first 50 rows, flattened</a>

%F Sum_{k=0..n} T(n,k) = A088137(n+1).

%F T(n,k) = T(n-1,k-1) + T(n-1,k) - 3*T(n-2,k-1), n>0.

%F From _Paul Barry_, Jan 24 2011: (Start)

%F T(n,k) = Sum_{j=0..n} binomial(n-j,k)*binomial(k,j)*(-3)^j.

%F T(n,k) = [k<=n]*Hypergeometric2F1(-k,k-n,1,-2). (End)

%F E.g.f. for the n-th subdiagonal: exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(-2*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 - 4*x + 4*x^2/2) = 1 - 3*x - 3*x^2/2! + x^3/3! + 9*x^4/4! + 21*x^5/5! + .... - _Peter Bala_, Mar 05 2017

%e Triangle begins:

%e 1;

%e 1, 1;

%e 1, -1, 1;

%e 1, -3, -3, 1;

%e 1, -5, -3, -5, 1;

%e 1, -7, 1, 1, -7, 1;

%e 1, -9, 9, 11, 9, -9, 1;

%e 1, -11, 21, 17, 17, 21, -11, 1;

%e 1, -13, 37, 11, 1, 11, 37, -13, 1;

%t T[n_, k_] := Sum[Binomial[n - j, k]*Binomial[k, j]*(-3)^j, {j, 0, n}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _G. C. Greubel_, Oct 15 2017 *)

%o (PARI) for(n=0,10, for(k=0,n, print1(sum(j=0,n, binomial(n-j,k)* binomial(k,j)*(-3)^j), ", "))) \\ _G. C. Greubel_, Oct 15 2017

%Y Cf. Pascal (1,m,1) array: A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081579 (m = 4), A081580 (m = 5), A081581 (m = 6), A081582 (m = 7), A143683 (m = 8).

%K sign,tabl,easy

%O 0,8

%A _Philippe Deléham_, Nov 12 2006