login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123564
The infinite Fibonacci word reencoded by writing successive non-overlapping pairs of bits as decimal numbers.
3
2, 3, 1, 1, 2, 3, 1, 1, 2, 2, 3, 1, 2, 2, 3, 1, 2, 2, 3, 1, 1, 2, 3, 1, 1, 2, 2, 3, 1, 2, 2, 3, 1, 2, 2, 3, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 2, 2, 3, 1, 2, 2, 3, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 2
OFFSET
1,1
COMMENTS
The algorithm used here suggests multiple variations such as using more than 2 bits, allowing overlap of successive subwords, using other numbers for the encoding of subwords or using other binary sequences. (E.g. overlapping: a(n) = 2*A005614(n) + A005614(n+1) )
Essentially equal to A143667. - Michel Dekking, Sep 26 2017
LINKS
Michel Dekking and Mike Keane, Two-block substitutions and morphic words, arXiv:2202.13548 [math.CO], 2022.
FORMULA
f = (sqrt(5)-1)/2; m = 2*n; a(n) = floor(m*f) - 2*floor((m-1)*f) + floor((m+1)*f);
a(n) = 2*A005614(2n-1) + A005614(2n), using the infinite Fibonacci word A005614.
EXAMPLE
a(1) = 2*1+0 = 2;
a(2) = 2*1+1 = 3;
a(3) = 2*0+1 = 1.
MATHEMATICA
f := 1/GoldenRatio; T[n_] := Floor[2*n*f] - 2*Floor[(2*n - 1)*f] + Floor[(2*n + 1)*f]; Transpose[{Range[1, 50], Table[T[n], {n, 1, 50}] (* G. C. Greubel, Oct 16 2017 *)
PROG
(PARI) f=(sqrt(5)-1)/2; a(n)= my(m=2*n); floor(m*f)-2*floor((m-1)*f)+floor((m+1)*f); \\ Michel Marcus, Sep 26 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Alexandre Losev, Nov 12 2006
STATUS
approved