login
A308644
Number of ways to write n as (3^a*5^b)^2 + c*(3c+1)/2 + d*(7d+1)/2, where a and b are nonnegative integers, and c and d are integers.
5
1, 1, 1, 1, 2, 3, 1, 1, 2, 2, 2, 2, 3, 4, 2, 5, 3, 2, 3, 2, 3, 1, 3, 4, 3, 4, 5, 3, 5, 4, 6, 2, 2, 4, 4, 6, 2, 4, 6, 7, 5, 3, 4, 6, 3, 4, 4, 2, 4, 3, 4, 3, 3, 4, 5, 5, 5, 2, 3, 8, 3, 5, 4, 7, 5, 4, 4, 4, 4, 5, 4, 1, 4, 5, 4, 1, 3, 3, 6, 4, 7, 7, 3, 5, 7, 8, 2, 4, 5, 6, 7, 3, 8, 5, 7, 8, 4, 7, 8, 2
OFFSET
1,5
COMMENTS
Conjecture 1: a(n) > 0 for all n > 0. Also, any positive integer n can be written as (3^a*5^b)^2 + c*(3c+1)/2 + d*(7d+3)/2, where a and b are nonnegative integers, and c and d are integers.
Conjecture 2: Let r be 1 or 3. Then, any positive integer n can be written as (3^a*4^b)^2 + c*(3c+1)/2 + d*(7d+r)/2, where a and b are nonnegative integers, and c and d are integers.
We have verified Conjectures 1-2 for all n = 1..10^6.
See also A308640, A308641 and A308656 for similar conjectures.
LINKS
Zhi-Wei Sun, Universal sums of three quadratic polynomials, Sci. China Math., in press.
EXAMPLE
a(152) = 1 with 152 = (3^0*5^0)^2 + (-4)*(3*(-4)+1)/2 + 6*(7*6+1)/2.
a(129894) = 1 with 129894 = (3^0*5^1)^2 + 154*(3*154+1)/2 + 164*(7*164+1)/2.
a(200963) = 1 with 200963 = (3^1*5^0)^2 + 364*(3*364+1)/2 + 24*(7*24+1)/2.
a(371278) = 1 with 371278 = (3^3*5^1)^2 + (-382)*(3*(-382)+1)/2 + (-196)*(7*(-196)+1)/2.
a(534699) = 1 with 534699 = (3^2*5^2)^2 + 543*(3*543+1)/2 + (-109)*(3*(-109)+1)/2.
MATHEMATICA
PenQ[n_]:=PenQ[n]=IntegerQ[Sqrt[24n+1]];
tab={}; Do[r=0; Do[If[PenQ[n-9^a*25^b-x(7x+1)/2], r=r+1], {a, 0, Log[9, n]}, {b, 0, Log[25, n/9^a]}, {x, -Floor[(Sqrt[56(n-9^a*25^b)+1]+1)/14], (Sqrt[56(n-9^a*25^b)+1]-1)/14}]; tab=Append[tab, r], {n, 1, 100}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jun 13 2019
STATUS
approved