login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081584
Fourth row of Pascal-(1,2,1) array A081577.
3
1, 13, 79, 307, 886, 2086, 4258, 7834, 13327, 21331, 32521, 47653, 67564, 93172, 125476, 165556, 214573, 273769, 344467, 428071, 526066, 640018, 771574, 922462, 1094491, 1289551, 1509613, 1756729, 2033032, 2340736, 2682136, 3059608
OFFSET
0,2
COMMENTS
Equals binomial transform of [1, 12, 54, 108, 81, 0, 0, 0, ...] where (1, 12, 54, 108, 81) = row 4 of triangle A013610. - Gary W. Adamson, Jul 19 2008
FORMULA
a(n) = (8 + 6*n + 81*n^2 - 18*n^3 + 27*n^4)/8.
G.f.: (1+2*x)^4/(1-x)^5.
E.g.f.: (1/8)*(8 + 96*x + 216*x^2 + 144*x^3 + 27*x^4)*exp(x). - G. C. Greubel, May 26 2021
MAPLE
seq((8+6*n+81*n^2-18*n^3+27*n^4)/8, n=0..40); # G. C. Greubel, May 26 2021
MATHEMATICA
CoefficientList[Series[(1+2x)^4/(1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 09 2013 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 13, 79, 307, 886}, 40] (* Harvey P. Dale, Sep 18 2024 *)
PROG
(Magma) [(8+6*n+81*n^2-18*n^3+27*n^4)/8: n in [0..40]]; // Vincenzo Librandi, Aug 09 2013
(Sage) [(8+6*n+81*n^2-18*n^3+27*n^4)/8 for n in (0..40)] # G. C. Greubel, May 26 2021
CROSSREFS
Sequence in context: A041318 A142056 A173831 * A125323 A075584 A126481
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 23 2003
STATUS
approved