Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jan 18 2022 21:46:14
%S 1,1,1,1,4,1,1,7,7,1,1,10,18,10,1,1,13,34,34,13,1,1,16,55,80,55,16,1,
%T 1,19,81,155,155,81,19,1,1,22,112,266,350,266,112,22,1,1,25,148,420,
%U 686,686,420,148,25,1,1,28,189,624,1218,1512,1218,624,189,28,1
%N Triangle read by rows with T(n,0) = 1 for n >= 0 and T(n,k) = binomial(n-1,k-1)*(2*k*(n-k) + n)/k for 0 < k <= n.
%C Depending on some fixed integer m there is a family of number triangles T(m; n,k) for 0 <= k <= n with entries: T(m; n,0) = 1 for n >= 0 and T(m; n,k) = binomial(n-1,k-1)*(m*k*(n-k) + n)/k for 0 < k <= n.
%C Special cases: m=0 (A007318), m=1 (A103450), and m=2 (this triangle).
%C Further properties: T(m; n,n) = 1 for n >= 0; T(m; n,k) = T(m; n,n-k) for 0 <= k <= n; T(m; 2*n,n) = A000108(n)*A086270(m,n+1) for n >= 0 and m > 0.
%C T(m; n,k) = T(m; n-1,k) + T(m; n-1,k-1) + m*binomial(n-2,k-1) for 0 < k < n.
%C G.f. of column k: (1 + m*k*x) * x^k / (1 - x)^(k+1).
%C G.f.: A(x, t) = (1 - (1+x)*t + m*x*t^2) / (1 - (1+x)*t)^2.
%C T(m; n,k) = [x^k] (1 + (m*n - m + 2)*x + x^2) * (1 + x)^(n-2) for n > 0.
%F T(n, n) = 1; T(n, k) = T(n, n-k).
%F T(2*n, n) = (n+1)^2 * A000108(n).
%F T(n, k) = T(n-1, k) + T(n-1, k-1) + 2 * binomial(n-2,k-1) for 0 < k < n.
%F G.f. of column k: (1 + 2*k*x) * x^k / (1 - x)^(k+1).
%F G.f.: A(x,t) = (1 - (1 + x) * t + 2 * x * t^2) / (1 - (1 + x) * t)^2.
%F T(n,k) = [x^k] (1 + 2 * n * x + x^2) * (1 + x)^(n-2) for n > 0.
%e Triangle T(n, k) for 0 <= k <= n starts:
%e n\k : 0 1 2 3 4 5 6 7 8 9
%e =================================================
%e 0 : 1
%e 1 : 1 1
%e 2 : 1 4 1
%e 3 : 1 7 7 1
%e 4 : 1 10 18 10 1
%e 5 : 1 13 34 34 13 1
%e 6 : 1 16 55 80 55 16 1
%e 7 : 1 19 81 155 155 81 19 1
%e 8 : 1 22 112 266 350 266 112 22 1
%e 9 : 1 25 148 420 686 686 420 148 25 1
%e etc.
%t Flatten[Table[Join[{1},Table[Binomial[n-1,k-1](2*k*(n-k) + n)/k,{k,n}]],{n,0,10}]] (* _Stefano Spezia_, Jan 06 2022 *)
%Y Row sums are A057711(n+1).
%Y Cf. A000108, A007318, A086270, A103450.
%K nonn,easy,tabl
%O 0,5
%A _Werner Schulte_, Jan 02 2022