OFFSET
1,3
COMMENTS
a(n)/A245328(n) enumerates all the reduced nonnegative rational numbers exactly once.
If the terms (n>0) are written as an array (left-aligned fashion) with rows of length 2^m, m = 0,1,2,3,...
1,
1, 2,
2, 3,1, 3,
3, 5,2, 5,3, 4,1, 4,
5, 8,3, 8,5, 7,2, 7,4, 7,3, 7,4,5,1,5,
8,13,5,13,8,11,3,11,7,12,5,12,7,9,2,9,7,11,4,11,7,10,3,10,5,9,4,9,5,6,1,6,
then the sum of the m-th row is 3^m (m = 0,1,2,), and each column k is a Fibonacci sequence.
If the rows are written in a right-aligned fashion:
1,
1,2,
2,3,1,3,
3,5,2,5,3,4,1,4,
5, 8,3, 8,5, 7,2, 7,4,7,3,7,4,5,1,5,
8,13,5,13,8,11,3,11,7,12,5,12,7,9,2,9,7,11,4,11,7,10,3,10,5,9,4,9,5,6,1,6,
then each column is an arithmetic sequence.
If the sequence is considered by blocks of length 2^m, m = 0,1,2,..., the blocks of this sequence are permutations of terms of blocks from A002487 (Stern's diatomic series or Stern-Brocot sequence), and, more precisely, the reverses of blocks of A020650 ( a(2^m+k) = A020650(2^(m+1)-1-k), m = 0,1,2,..., k = 0,1,2,...,2^m-1).
Moreover, each block is the bit-reversed permutation of the corresponding block of A245325.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..16383, rows 1-14, flattened.
FORMULA
a((2*n+1)*2^m - 2) = A273493(n), n > 0, m > 0. For n = 0, m > 0, A273493(0) = 1 is needed. For n = 1, m = 0, A273493(0) = 1 is needed. For n > 1, m = 0, numerator((2*n-1) = num+den(n-1). - Yosu Yurramendi, Mar 02 2017
MATHEMATICA
f[n_] := Which[n == 1, 1, EvenQ@ n, 1/(f[n/2] + 1), True, f[(n - 1)/2] + 1]; Table[Numerator@ f@ k, {n, 7}, {k, 2^(n - 1), 2^n - 1}] // Flatten (* Michael De Vlieger, Mar 02 2017 *)
PROG
(R)
N <- 25 # arbitrary
a <- c(1, 1, 2)
for(n in 1:N){
a[4*n] <- a[2*n+1]
a[4*n+1] <- a[2*n] + a[2*n+1]
a[4*n+2] <- a[2*n]
a[4*n+3] <- a[2*n] + a[2*n+1]
}
a
(PARI) a(n) = my(A=0); forstep(i=logint(n, 2), 0, -1, if(bittest(n, i), A++, A=1/(A+1))); numerator(A) \\ Mikhail Kurkov, Mar 12 2023
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Yosu Yurramendi, Jul 18 2014
STATUS
approved