The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A352680 Array read by ascending antidiagonals. A family of Catalan-like sequences. A(n, k) = [x^k] ((n - 1)*x + 1)*(1 - sqrt(1 - 4*x))/(2*x). 3
1, 1, 0, 1, 1, 1, 1, 2, 2, 3, 1, 3, 3, 5, 9, 1, 4, 4, 7, 14, 28, 1, 5, 5, 9, 19, 42, 90, 1, 6, 6, 11, 24, 56, 132, 297, 1, 7, 7, 13, 29, 70, 174, 429, 1001, 1, 8, 8, 15, 34, 84, 216, 561, 1430, 3432, 1, 9, 9, 17, 39, 98, 258, 693, 1859, 4862, 11934, 1, 10, 10, 19, 44, 112, 300, 825, 2288, 6292, 16796, 41990 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
LINKS
FORMULA
A(n, k) = (n-1)*CatalanNumber(k-1) + CatalanNumber(k) for n >= 0 and k >= 1, A(n, 0) = 1. (Cf. A352682.)
D-finite with recurrence: A(n, k) = A(n, k-1)*((6 - 4*k)*(n - 3 + k*(3 + n)))/((1 + k)*(6 - k*(3 + n))) for k >= 3, otherwise 1, n, n + 1 for k = 0, 1, 2.
Given a list T let PS(T) denote the list of partial sums of T. Given two list S and T let [S, T] denote the concatenation of the lists. Further let P[end] denote the last element of the list P. Row n of the array A with length k can be computed by the following procedure:
A = [n], P = [1], R = [1];
Repeat k times: R = [R, A], P = PS([P, A]), A = [P[end]];
Return R.
EXAMPLE
Array starts:
n\k 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
------------------------------------------------------
[0] 1, 0, 1, 3, 9, 28, 90, 297, 1001, 3432, ... A071724
[1] 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, ... A000108
[2] 1, 2, 3, 7, 19, 56, 174, 561, 1859, 6292, ... A071716
[3] 1, 3, 4, 9, 24, 70, 216, 693, 2288, 7722, ... A038629
[4] 1, 4, 5, 11, 29, 84, 258, 825, 2717, 9152, ... A352681
[5] 1, 5, 6, 13, 34, 98, 300, 957, 3146, 10582, ...
[6] 1, 6, 7, 15, 39, 112, 342, 1089, 3575, 12012, ...
[7] 1, 7, 8, 17, 44, 126, 384, 1221, 4004, 13442, ...
[8] 1, 8, 9, 19, 49, 140, 426, 1353, 4433, 14872, ...
[9] 1, 9, 10, 21, 54, 154, 468, 1485, 4862, 16302, ...
.
Seen as a triangle:
[0] 1;
[1] 1, 0;
[1] 1, 1, 1;
[2] 1, 2, 2, 3;
[3] 1, 3, 3, 5, 9;
[4] 1, 4, 4, 7, 14, 28;
[5] 1, 5, 5, 9, 19, 42, 90;
[6] 1, 6, 6, 11, 24, 56, 132, 297;
MAPLE
for n from 0 to 9 do
ogf := ((n - 1)*x + 1)*(1 - sqrt(1 - 4*x))/(2*x);
ser := series(ogf, x, 12):
print(seq(coeff(ser, x, k), k = 0..9)); od:
# Alternative:
alias(PS = ListTools:-PartialSums):
CatalanRow := proc(n, len) local a, k, P, R;
a := n; P := [1]; R := [1];
for k from 0 to len-1 do
R := [op(R), a]; P := PS([op(P), a]); a := P[-1] od;
R end: seq(lprint(CatalanRow(n, 9)), n = 0..9);
# Recurrence:
A := proc(n, k) option remember: if k < 3 then [1, n, n + 1][k + 1] else
A(n, k-1)*((6 - 4*k)*(n - 3 + k*(3 + n)))/((1 + k)*(6 - k*(3 + n))) fi end:
seq(print(seq(A(n, k), k = 0..9)), n = 0..9);
MATHEMATICA
T[n_, 0] := 1;
T[n_, k_] := (n - 1) CatalanNumber[k - 1] + CatalanNumber[k];
Table[T[n, k], {n, 0, 9}, {k, 0, 9}] // TableForm
PROG
(Julia) # Compare with the Julia function A352686Row.
function A352680Row(n, len)
a = BigInt(n)
P = BigInt[1]; T = BigInt[1]
for k in 0:len-1
T = push!(T, a)
P = cumsum(push!(P, a))
a = P[end]
end
T end
for n in 0:9 println(A352680Row(n, 9)) end
CROSSREFS
Diagonals: A077587 (main), A271823.
Compare A352682 for a similar array based on the Bell numbers.
Sequence in context: A088741 A162911 A245327 * A131821 A360913 A204123
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Mar 27 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 20:35 EDT 2024. Contains 372555 sequences. (Running on oeis4.)