login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352682
Array read by ascending antidiagonals. A(n, k) = (n-1)*Gould(k-1) + Bell(k) for n >= 0 and k >= 1, A(n, 0) = 1.
6
1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 1, 3, 3, 5, 6, 1, 4, 4, 8, 15, 21, 1, 5, 5, 11, 24, 52, 82, 1, 6, 6, 14, 33, 83, 203, 354, 1, 7, 7, 17, 42, 114, 324, 877, 1671, 1, 8, 8, 20, 51, 145, 445, 1400, 4140, 8536, 1, 9, 9, 23, 60, 176, 566, 1923, 6609, 21147, 46814
OFFSET
0,8
COMMENTS
The array defines a family of Bell-like sequences. The case n = 1 are the Bell numbers A000110, case n = 0 is A032347 and case n = 2 is A038561. The n-th sequence r(k) = T(n, k) is defined for k >= 0 by the recurrence r(k) = Sum_{j=0..k-1} binomial(k-1, j)*r(j) with r(0) = 1 and r(1) = n.
FORMULA
Given a list T let PS(T) denote the list of partial sums of T. Given two list S and T let [S, T] denote the concatenation of the lists. Further let P[end] denote the last element of the list P. Row n of the array with length k can be computed by the following procedure:
A = [n], P = [1], R = [1];
Repeat k-1 times: R = [R, A], P = PS([A, P]), A = [P[end]];
Return R.
EXAMPLE
Array starts:
n\k 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
---------------------------------------------------------
[0] 1, 0, 1, 2, 6, 21, 82, 354, 1671, 8536, ... A032347
[1] 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, ... A000110
[2] 1, 2, 3, 8, 24, 83, 324, 1400, 6609, 33758, ... A038561
[3] 1, 3, 4, 11, 33, 114, 445, 1923, 9078, 46369, ... A038559
[4] 1, 4, 5, 14, 42, 145, 566, 2446, 11547, 58980, ... A352683
[5] 1, 5, 6, 17, 51, 176, 687, 2969, 14016, 71591, ...
[6] 1, 6, 7, 20, 60, 207, 808, 3492, 16485, 84202, ...
[7] 1, 7, 8, 23, 69, 238, 929, 4015, 18954, 96813, ...
[8] 1, 8, 9, 26, 78, 269, 1050, 4538, 21423, 109424, ...
[9] 1, 9, 10, 29, 87, 300, 1171, 5061, 23892, 122035, ...
MAPLE
alias(PS = ListTools:-PartialSums):
BellRow := proc(n, len) local a, k, P, T;
a := n; P := [1]; T := [1];
for k from 1 to len-1 do
T := [op(T), a]; P := PS([a, op(P)]); a := P[-1] od;
T end: seq(lprint(BellRow(n, 10)), n = 0..9);
MATHEMATICA
nmax = 10;
BellRow[n_, len_] := Module[{a, k, P, T}, a = n; P = {1}; T = {1};
For[k = 1, k <= len - 1, k++,
T = Append[T, a]; P = Accumulate[Join[{a}, P]]; a = P[[-1]]];
T];
rows = Table[BellRow[n, nmax + 1], {n, 0, nmax}];
A[n_, k_] := rows[[n + 1, k + 1]];
Table[A[n - k, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 15 2024, after Peter Luschny *)
PROG
(Julia)
function BellRow(m, len)
a = m; P = BigInt[1]; T = BigInt[1]
for n in 1:len
T = vcat(T, a)
P = cumsum(vcat(a, P))
a = P[end]
end
T end
for n in 0:9 BellRow(n, 9) |> println end
CROSSREFS
Diagonals: A352684 (main).
Cf. A040027 (Gould), A352686 (subtriangle).
Compare A352680 for a similar array based on the Catalan numbers.
Sequence in context: A351581 A017125 A063276 * A374578 A361639 A055253
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Mar 28 2022
STATUS
approved