login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038559
a(n) = 2*A040027(n-1) + Bell(n), where Bell = A000110.
4
1, 3, 4, 11, 33, 114, 445, 1923, 9078, 46369, 254297, 1487896, 9239135, 60615819, 418583924, 3032405831, 22979752405, 181697363626, 1495586215841, 12789423056183, 113415288869750, 1041244540823413, 9881851825756365, 96811870321650792, 977851660102425867
OFFSET
0,2
LINKS
H. W. Gould and J. Quaintance, A linear binomial recurrence and the Bell numbers and polynomials, Applic. Anal. Discr. Math 1 (2007) 371-385.
FORMULA
a(0) = 1, a(1) = 3; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * a(n-k). - Ilya Gutkovskiy, Jul 10 2020
MAPLE
A038559 := proc(n)
2*A040027(n-1)+combinat[bell](n) ;
end proc: # R. J. Mathar, Dec 20 2013
alias(PS = ListTools:-PartialSums):
A038559List := proc(len) local a, k, P, T; a := 3; P := [1]; T := [1];
for k from 1 to len-1 do
T := [op(T), a]; P := PS([a, op(P)]); a := P[-1] od;
T end: A038559List(25); # Peter Luschny, Mar 28 2022
MATHEMATICA
a[0] = 1; a[1] = 3; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1]*a[n - k], {k, n}];
Array[a, 30, 0] (* Paolo Xausa, Sep 17 2024 *)
Module[{a = 3, p = {1}}, Join[{1, a}, Table[a = Last[p = Accumulate[Prepend[p, a]]], 28]]] (* Paolo Xausa, Sep 17 2024, after Peter Luschny *)
CROSSREFS
Sequence in context: A019169 A049979 A084378 * A242044 A344263 A275309
KEYWORD
easy,nonn
AUTHOR
STATUS
approved