login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array read by ascending antidiagonals. A(n, k) = (n-1)*Gould(k-1) + Bell(k) for n >= 0 and k >= 1, A(n, 0) = 1.
6

%I #20 Apr 15 2024 13:13:06

%S 1,1,0,1,1,1,1,2,2,2,1,3,3,5,6,1,4,4,8,15,21,1,5,5,11,24,52,82,1,6,6,

%T 14,33,83,203,354,1,7,7,17,42,114,324,877,1671,1,8,8,20,51,145,445,

%U 1400,4140,8536,1,9,9,23,60,176,566,1923,6609,21147,46814

%N Array read by ascending antidiagonals. A(n, k) = (n-1)*Gould(k-1) + Bell(k) for n >= 0 and k >= 1, A(n, 0) = 1.

%C The array defines a family of Bell-like sequences. The case n = 1 are the Bell numbers A000110, case n = 0 is A032347 and case n = 2 is A038561. The n-th sequence r(k) = T(n, k) is defined for k >= 0 by the recurrence r(k) = Sum_{j=0..k-1} binomial(k-1, j)*r(j) with r(0) = 1 and r(1) = n.

%F Given a list T let PS(T) denote the list of partial sums of T. Given two list S and T let [S, T] denote the concatenation of the lists. Further let P[end] denote the last element of the list P. Row n of the array with length k can be computed by the following procedure:

%F A = [n], P = [1], R = [1];

%F Repeat k-1 times: R = [R, A], P = PS([A, P]), A = [P[end]];

%F Return R.

%e Array starts:

%e n\k 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...

%e ---------------------------------------------------------

%e [0] 1, 0, 1, 2, 6, 21, 82, 354, 1671, 8536, ... A032347

%e [1] 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, ... A000110

%e [2] 1, 2, 3, 8, 24, 83, 324, 1400, 6609, 33758, ... A038561

%e [3] 1, 3, 4, 11, 33, 114, 445, 1923, 9078, 46369, ... A038559

%e [4] 1, 4, 5, 14, 42, 145, 566, 2446, 11547, 58980, ... A352683

%e [5] 1, 5, 6, 17, 51, 176, 687, 2969, 14016, 71591, ...

%e [6] 1, 6, 7, 20, 60, 207, 808, 3492, 16485, 84202, ...

%e [7] 1, 7, 8, 23, 69, 238, 929, 4015, 18954, 96813, ...

%e [8] 1, 8, 9, 26, 78, 269, 1050, 4538, 21423, 109424, ...

%e [9] 1, 9, 10, 29, 87, 300, 1171, 5061, 23892, 122035, ...

%p alias(PS = ListTools:-PartialSums):

%p BellRow := proc(n, len) local a, k, P, T;

%p a := n; P := [1]; T := [1];

%p for k from 1 to len-1 do

%p T := [op(T), a]; P := PS([a, op(P)]); a := P[-1] od;

%p T end: seq(lprint(BellRow(n, 10)), n = 0..9);

%t nmax = 10;

%t BellRow[n_, len_] := Module[{a, k, P, T}, a = n; P = {1}; T = {1};

%t For[k = 1, k <= len - 1, k++,

%t T = Append[T, a]; P = Accumulate[Join[{a}, P]]; a = P[[-1]]];

%t T];

%t rows = Table[BellRow[n, nmax + 1], {n, 0, nmax}];

%t A[n_, k_] := rows[[n + 1, k + 1]];

%t Table[A[n - k, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Apr 15 2024, after _Peter Luschny_ *)

%o (Julia)

%o function BellRow(m, len)

%o a = m; P = BigInt[1]; T = BigInt[1]

%o for n in 1:len

%o T = vcat(T, a)

%o P = cumsum(vcat(a, P))

%o a = P[end]

%o end

%o T end

%o for n in 0:9 BellRow(n, 9) |> println end

%Y Rows: A032347, A000110 (Bell), A038561, A038559, A352683.

%Y Diagonals: A352684 (main).

%Y Cf. A040027 (Gould), A352686 (subtriangle).

%Y Compare A352680 for a similar array based on the Catalan numbers.

%K nonn,tabl

%O 0,8

%A _Peter Luschny_, Mar 28 2022