login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055253
Number of even digits in 2^n.
5
0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 3, 4, 3, 2, 3, 3, 2, 2, 5, 5, 4, 3, 4, 6, 3, 3, 6, 4, 6, 4, 5, 7, 6, 4, 4, 4, 5, 4, 7, 5, 4, 5, 7, 9, 8, 8, 8, 7, 8, 6, 10, 8, 7, 7, 9, 9, 6, 8, 8, 11, 11, 9, 12, 10, 10, 10, 13, 9, 8, 8, 10, 16, 15, 10, 13, 8, 7, 12, 12, 14, 13, 12, 15, 11, 12, 14, 10, 14, 16, 14, 16
OFFSET
0,7
LINKS
MAPLE
A055253 := proc(val) local i, j, k, n; n := 2^val; j := 0; k := floor(ln(n)/ln(10))+1; for i from 1 to k do if (n mod 10) mod 2 = 0 then j := j+1 fi; n := floor(n/10); od; RETURN(j); end: seq(A055253(n), n=0..110); # Jaap Spies, Dec 30 2003
MATHEMATICA
Table[Length@ Select[IntegerDigits[2^n], EvenQ], {n, 0, 120}] (* or *)
Table[Total@ Pick[DigitCount[2^n], {0, 1, 0, 1, 0, 1, 0, 1, 0, 1}, 1], {n, 0, 120}] (* Michael De Vlieger, May 01 2016 *)
Count[IntegerDigits[#], _?EvenQ]&/@(2^Range[0, 100]) (* Harvey P. Dale, Mar 25 2020 *)
PROG
(PARI) a(n) = #select(x->(x % 2) == 0, digits(2^n)); \\ Michel Marcus, May 01 2016
(Python)
def a(n): return sum(1 for d in str(1<<n) if d in "02468")
print([a(n) for n in range(91)]) # Michael S. Branicky, Dec 23 2022
CROSSREFS
Sequence in context: A352682 A374578 A361639 * A103626 A238224 A026268
KEYWORD
nonn,base,easy
AUTHOR
Asher Auel, May 05 2000
EXTENSIONS
More terms from Jaap Spies, Dec 30 2003
STATUS
approved