login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103626
Expansion of (1 + x + x^2 + x^3 + x^5 + x^6 + x^7 - x^8 + x^10 + x^11 - 2*x^12 - x^13 - x^14)/(1 - x^4 - x^8 - x^12 + 2*x^16).
1
1, 1, 1, 1, 1, 2, 2, 2, 1, 3, 4, 4, 1, 5, 6, 7, 1, 8, 10, 11, 1, 12, 16, 18, 1, 19, 24, 28, 1, 29, 38, 43, 1, 44, 58, 67, 1, 68, 88, 102, 1, 103, 136, 156, 1, 157, 206, 239, 1, 240, 314, 363, 1, 364, 480, 554, 1, 555, 728, 844, 1, 845, 1110, 1283, 1, 1284, 1690, 1955, 1, 1956
OFFSET
0,6
COMMENTS
Four interleaved sequences (1,1,1,1,1,1....), (1,2,3,5,8,12,...), (1,2,4,6,10,16,..) and (1,2,4,7,11,18,..) each with recurrence b(n) = b(n-1) + b(n-2) + b(n-3) - 2*b(n-4).
REFERENCES
J. J. P. Veerman, Hausdorff Dimension of Boundaries of Self-Affine Tiles in R^n, Bol. Soc. Mex. Mat. 3, Vol. 4, No 2, 1998, 159 - 182
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,-2).
FORMULA
Using the matrix M = {{1,0,0,0}, {1,0,0,1}, {0,2,0,0}, {0,1,1,0}} and vector v(0) = (1,1,1,1), then v(n) = M.v(n-1) gives v(n) = (a(4n), a(4n+1), a(4n+2), a(4n+3)).
From R. J. Mathar, Jul 10 2012: (Start)
a(n) = +a(n-4) +a(n-8) +a(n-12) -2*a(n-16).
a(4*n) = 1.
G.f.: (1+x+x^2+x^3+x^5+x^6+x^7-x^8+x^10+x^11-2*x^12-x^13-x^14) / ( (1-x)*(1+x)*(1+x^2)*(1-x^8-2*x^12) ). (End)
MATHEMATICA
M= {{1, 0, 0, 0}, {1, 0, 0, 1}, {0, 2, 0, 0}, {0, 1, 1, 0}};
v[0]= {1, 1, 1, 1}; v[n_]:= v[n]= M.v[n-1];
Flatten[Table[v[n], {n, 0, 40}]]
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 164); Coefficients(R!( (1+x+ x^2+x^3+x^5+x^6+x^7-x^8+x^10+x^11-2*x^12-x^13-x^14)/(1-x^4-x^8-x^12+ 2*x^16) )); // G. C. Greubel, Dec 10 2022
(SageMath)
def A103626_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x+x^2+x^3+x^5+x^6+x^7-x^8 + x^10+x^11-2*x^12-x^13- x^14)/(1-x^4-x^8-x^12+2*x^16) ).list()
A103626_list(164) # G. C. Greubel, Dec 10 2022
CROSSREFS
Sequence in context: A374578 A361639 A055253 * A238224 A026268 A089258
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Mar 25 2005
EXTENSIONS
Edited by G. C. Greubel, Dec 10 2022
STATUS
approved