login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103627
Let S(n) = {n,1,n}; sequence gives concatenation S(0), S(1), S(2), ...
2
0, 1, 0, 1, 1, 1, 2, 1, 2, 3, 1, 3, 4, 1, 4, 5, 1, 5, 6, 1, 6, 7, 1, 7, 8, 1, 8, 9, 1, 9, 10, 1, 10, 11, 1, 11, 12, 1, 12, 13, 1, 13, 14, 1, 14, 15, 1, 15, 16, 1, 16, 17, 1, 17, 18, 1, 18, 19, 1, 19, 20, 1, 20, 21, 1, 21, 22, 1, 22, 23, 1, 23, 24, 1, 24, 25, 1, 25, 26, 1, 26, 27, 1, 27, 28, 1, 28, 29
OFFSET
0,7
LINKS
J. J. P. Veerman, Hausdorff Dimension of Boundaries of Self-Affine Tiles in R^n, arXiv:math/9701215 [math.DS], 1997; Bol. Soc. Mex. Mat. 3, Vol. 4, No 2, 1998, 159-182.
FORMULA
Conjecture: a(n) = (2*n+1 + (2*n-8)*cos((2*n+1)*Pi/3) + sqrt(3)*cos((8*n+1)*Pi/6) + sqrt(3)*sin((2*n+1)*Pi/3))/9. - Wesley Ivan Hurt, Sep 25 2017
Conjectures from Colin Barker, Sep 27 2017: (Start)
G.f.: x*(1 + x^2 - x^3 + x^4) / ((1 - x)^2*(1 + x + x^2)^2).
a(n) = 2*a(n-3) - a(n-6) for n>5.
(End)
a(3*k+1) = 1, a(3*k)=a(3*k+2)=k. The conjectures easily follow from that. - Robert Israel, Jan 11 2018
a(n) = binomial(floor(n/3), a(n-1)). - Jon Maiga, Nov 24 2018
MAPLE
seq(op([k, 1, k]), k=0..50); # Robert Israel, Jan 11 2018
MATHEMATICA
v[0] = {1, 1, 1} M = {{1, 1, 0}, {0, 1, 0}, {0, 1, 1}} Det[M - x*IdentityMatrix[4] NSolve[Det[M - x*IdentityMatrix[4]] == 0, x] v[n_] := v[n] = M.v[n - 1] a = Flatten[Table[v[n], {n, 0, Floor[200/3]}]]
Flatten[Table[{n, 1, n}, {n, 0, 30}]] (* Harvey P. Dale, Jul 25 2011 *)
With[{nn=30}, Riffle[Riffle[Range[0, nn], Range[0, nn]], 1, {2, -1, 3}]] (* Harvey P. Dale, Aug 24 2016 *)
RecurrenceTable[{a[0] == 0, a[n] == Binomial[Floor[n/3], a[n - 1]]}, a, {n, 50}] (* Jon Maiga, Nov 24 2018 *)
PROG
(PARI) x='x+O('x^90); Vec(x*(1+x^2-x^3+x^4)/((1-x)^2*(1+x+x^2)^2)) \\ G. C. Greubel, Nov 25 2018
(Magma) m:=90; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( x*(1+x^2-x^3+x^4)/((1-x)^2*(1+x+x^2)^2) )); // G. C. Greubel, Nov 25 2018
(Sage) s=(x*(1+x^2-x^3+x^4)/((1-x)^2*(1+x+x^2)^2)).series(x, 90); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 25 2018
(GAP) a:=[0, 1, 0, 1, 1, 1];; for n in [7..90] do a[n]:=2*a[n-3]-a[n-6]; od; Concatenation([0], a); # G. C. Greubel, Nov 25 2018
CROSSREFS
Sequence in context: A325537 A072851 A246688 * A344088 A292595 A269596
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Mar 25 2005
STATUS
approved