login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103628
Total sum of parts of multiplicity 1 in all partitions of n.
8
0, 1, 2, 6, 10, 21, 33, 59, 89, 145, 212, 325, 463, 680, 948, 1348, 1845, 2558, 3446, 4681, 6219, 8306, 10901, 14352, 18632, 24230, 31151, 40077, 51074, 65088, 82290, 103986, 130517, 163679, 204078, 254174, 314975, 389839, 480369, 591133, 724600, 886965
OFFSET
0,3
COMMENTS
Total number of parts of multiplicity 1 in all partitions of n is A024786(n+1).
Equals A000041 convolved with A026741. - Gary W. Adamson, Jun 11 2009
LINKS
FORMULA
G.f.: x*(1+x+x^2)/(1-x^2)^2 /Product_{k>0}(1-x^k).
a(n) = A066186(n) - A194544(n). - Omar E. Pol, Nov 20 2011
a(n) = 3*A014153(n)/4 - 3*A000070(n)/4 - A270143(n+1)/4 + A087787(n)/4. - Vaclav Kotesovec, Nov 05 2016
a(n) ~ 3^(3/2) * exp(Pi*sqrt(2*n/3)) / (8*Pi^2) * (1 - Pi/(24*sqrt(6*n))). - Vaclav Kotesovec, Nov 05 2016
EXAMPLE
Partitions of 4 are [1,1,1,1], [1,1,2], [2,2], [1,3], [4] and a(4) = 0 + 2 + 0 + (1+3) + 4 = 10.
MAPLE
gf:=x*(1+x+x^2)/(1-x^2)^2/product((1-x^k), k=1..500): s:=series(gf, x, 100): for n from 0 to 60 do printf(`%d, `, coeff(s, x, n)) od: # James A. Sellers, Apr 22 2005
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, [1, 0],
`if`(i<1, [0, 0], add((l->`if`(j=1, [l[1],
l[2]+l[1]*i], l))(b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=0..50); # Alois P. Heinz, Feb 03 2013
MATHEMATICA
b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n-p*m, p-1], Array[0&, p*m]]], {m, 0, n/p}]]]; a[n_] := b[n, n][[3]]; a[0] = 0; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)
CROSSREFS
Cf. A026741. - Gary W. Adamson, Jun 11 2009
Column k=1 of A222730. - Alois P. Heinz, Mar 03 2013
Sequence in context: A067716 A125518 A083176 * A207382 A334344 A272952
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Mar 25 2005
EXTENSIONS
More terms from James A. Sellers, Apr 22 2005
STATUS
approved