OFFSET
1,3
COMMENTS
Define j(n) = sqrt(48*a(n)^2 + 48*a(n) + 1), then j(n) is prime for n=3, 4, 5, 6, 7, 25, 28, 32, 35, 48, 65, 66, 88, 96, 113, 119, 151, 155, 182, 220, 231, 316, 488, 531, 599, 722, 1049, 1176, ...
For n > 1, first member of the Diophantine pair (m,k) that satisfies 12*(m^2 + m) = k^2 + k; a(n)=m. - Herbert Kociemba, May 12 2008
Former name: Define a(1)=0, a(2)=0, a(3)=2, a(4)=4, a(5)=34, a(6)=62, a(7)=480, a(8)=870 such that from i=1 to 8: 48*a(i)^2 + 48*a(i) + 1 = j(i)^2 with j(1)=1, j(2)=1, j(3)=17, j(4)=31, j(5)=239, j(6)=433, j(7)=3329, j(8)=6031. Then a(n) = a(n-8) + 28*sqrt(48*(a(n-4)^2) + 48*a(n-4) + 1). - G. C. Greubel, Mar 22 2024
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,14,-14,-1,1).
FORMULA
G.f.: 2*x^3*(1+x+x^2)/((1-x)*(1-4*x+x^2)*(1+4*x+x^2)). - Ralf Stephan, May 18 2007
a(n) = (1/8)*(-16*[n=0] - 4 + 5*(-1)^n*(3*A125905(n) + 11*A125905(n-1)) + (5*A125905(n) + 19*A125905(n-1))), where A125905(n) = ChebyshevU(n, -2). - G. C. Greubel, Mar 22 2024
E.g.f.: (15*cosh(sqrt(3)*x)*(2*cosh(2*x) + sinh(2*x))/2 - sqrt(3)*(4*cosh(x) + sinh(x))*(cosh(x) + 4*sinh(x))*sinh(sqrt(3)*x) - 3*(4 + exp(x)))/6. - Stefano Spezia, Jun 02 2024
MATHEMATICA
a[1]=0; a[2]=0; a[3]=2; a[n_]:=a[n]= 3+7a[n-2]+Sqrt[1+48a[n-2]+48a[n-2]^2]; Table[a[n], {n, 1, 20}] (* Herbert Kociemba, May 12 2008 *)
Rest@CoefficientList[Series[2*x^3*(1+x+x^2)/(1-x-14*x^2+14*x^3+x^4-x^5), {x, 0, 30}], x] (* G. C. Greubel, Jul 15 2018 *)
LinearRecurrence[{1, 14, -14, -1, 1}, {0, 0, 2, 4, 34}, 30] (* Harvey P. Dale, Jun 04 2021 *)
PROG
(PARI) my(x='x+O('x^30)); concat([0, 0], Vec(2*x^3*(1+x+x^2)/(1-x-14*x^2+14*x^3 + x^4-x^5))) \\ G. C. Greubel, Jul 15 2018
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); [0, 0] cat Coefficients(R!(2*(x^2+x+1)/(1-x-14*x^2+14*x^3+x^4-x^5))); // G. C. Greubel, Jul 15 2018
(SageMath)
@CachedFunction
def b(n): return chebyshev_U(n, -2) # A125905
def A103625(n): return (1/8)*(-16*int(n==0) -4 +5*(-1)^n*(3*b(n) +11*b(n-1)) +5*b(n) +19*b(n-1))
[A103625(n) for n in range(1, 41)] # G. C. Greubel, Mar 22 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Pierre CAMI, Mar 29 2005
EXTENSIONS
Terms a(17) onward added by G. C. Greubel, Jul 15 2018
Edited by G. C. Greubel, Mar 22 2024
STATUS
approved