login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1 + x + x^2 + x^3 + x^5 + x^6 + x^7 - x^8 + x^10 + x^11 - 2*x^12 - x^13 - x^14)/(1 - x^4 - x^8 - x^12 + 2*x^16).
1

%I #20 Dec 11 2022 19:31:32

%S 1,1,1,1,1,2,2,2,1,3,4,4,1,5,6,7,1,8,10,11,1,12,16,18,1,19,24,28,1,29,

%T 38,43,1,44,58,67,1,68,88,102,1,103,136,156,1,157,206,239,1,240,314,

%U 363,1,364,480,554,1,555,728,844,1,845,1110,1283,1,1284,1690,1955,1,1956

%N Expansion of (1 + x + x^2 + x^3 + x^5 + x^6 + x^7 - x^8 + x^10 + x^11 - 2*x^12 - x^13 - x^14)/(1 - x^4 - x^8 - x^12 + 2*x^16).

%C Four interleaved sequences (1,1,1,1,1,1....), (1,2,3,5,8,12,...), (1,2,4,6,10,16,..) and (1,2,4,7,11,18,..) each with recurrence b(n) = b(n-1) + b(n-2) + b(n-3) - 2*b(n-4).

%D J. J. P. Veerman, Hausdorff Dimension of Boundaries of Self-Affine Tiles in R^n, Bol. Soc. Mex. Mat. 3, Vol. 4, No 2, 1998, 159 - 182

%H G. C. Greubel, <a href="/A103626/b103626.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,-2).

%F Using the matrix M = {{1,0,0,0}, {1,0,0,1}, {0,2,0,0}, {0,1,1,0}} and vector v(0) = (1,1,1,1), then v(n) = M.v(n-1) gives v(n) = (a(4n), a(4n+1), a(4n+2), a(4n+3)).

%F From _R. J. Mathar_, Jul 10 2012: (Start)

%F a(n) = +a(n-4) +a(n-8) +a(n-12) -2*a(n-16).

%F a(4*n) = 1.

%F G.f.: (1+x+x^2+x^3+x^5+x^6+x^7-x^8+x^10+x^11-2*x^12-x^13-x^14) / ( (1-x)*(1+x)*(1+x^2)*(1-x^8-2*x^12) ). (End)

%t M= {{1,0,0,0}, {1,0,0,1}, {0,2,0,0}, {0,1,1,0}};

%t v[0]= {1,1,1,1}; v[n_]:= v[n]= M.v[n-1];

%t Flatten[Table[v[n], {n,0,40}]]

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 164); Coefficients(R!( (1+x+ x^2+x^3+x^5+x^6+x^7-x^8+x^10+x^11-2*x^12-x^13-x^14)/(1-x^4-x^8-x^12+ 2*x^16) )); // _G. C. Greubel_, Dec 10 2022

%o (SageMath)

%o def A103626_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( (1+x+x^2+x^3+x^5+x^6+x^7-x^8 + x^10+x^11-2*x^12-x^13- x^14)/(1-x^4-x^8-x^12+2*x^16) ).list()

%o A103626_list(164) # _G. C. Greubel_, Dec 10 2022

%K nonn,easy

%O 0,6

%A _Roger L. Bagula_, Mar 25 2005

%E Edited by _G. C. Greubel_, Dec 10 2022