login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026268
Triangle, T(n, k): T(n,k) = 1 for n < 3, T(3,1) = T(3,2) = T(3,3) = 2, T(n,0) = 1, T(n,1) = n-1, T(n,n) = T(n-1,n-2) + T(n-1,n-1), otherwise T(n,k) = T(n-1,k-2) + T(n-1,k-1) + T(n-1,k), read by rows.
14
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 3, 5, 6, 4, 1, 4, 9, 14, 15, 10, 1, 5, 14, 27, 38, 39, 25, 1, 6, 20, 46, 79, 104, 102, 64, 1, 7, 27, 72, 145, 229, 285, 270, 166, 1, 8, 35, 106, 244, 446, 659, 784, 721, 436, 1, 9, 44, 149, 385, 796, 1349, 1889, 2164, 1941, 1157, 1, 10, 54, 202, 578, 1330, 2530, 4034, 5402, 5994, 5262, 3098
OFFSET
0,8
COMMENTS
a(n) = number of strings s(0)..s(n) such that s(n) = n-k, where s(0) = 0, s(1) = 1, |s(i)-s(i-1)| <= 1 for i >= 2; |s(2)-s(1)| = 1, and |s(3)-s(2)| = 1 if s(2) = 1.
FORMULA
From G. C. Greubel, Sep 24 2022: (Start)
T(n, 1) = A000027(n-1), n >= 1.
T(n, 2) = A212342(n-1), n >= 2.
T(n, n-1) = A026270(n), n >= 2.
T(n, n-2) = A026288(n), n >= 2.
T(n, n-3) = A026289(n), n >= 3.
T(n, n-4) = A026290(n), n >= 4.
T(n, n) = A026269(n), n >= 2.
T(n, floor(n/2)) = A026297(n), n >= 0.
T(2*n, n) = A026292(n).
T(2*n, n-1) = A026295(n), n >= 1.
T(2*n, n+1) = A026296(n), n >= 1.
T(2*n-1, n-1) = A026291(n), n >= 2.
T(3*n, n) = A026293(n), n >= 0.
T(4*n, n) = A026294(n), n >= 0.
Sum_{k=0..n} T(n, k) = A026299(n-1), n >= 3.(End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 2, 2, 2;
1, 3, 5, 6, 4;
1, 4, 9, 14, 15, 10;
1, 5, 14, 27, 38, 39, 25;
1, 6, 20, 46, 79, 104, 102, 64;
1, 7, 27, 72, 145, 229, 285, 270, 166;
1, 8, 35, 106, 244, 446, 659, 784, 721, 436;
1, 9, 44, 149, 385, 796, 1349, 1889, 2164, 1941, 1157;
MATHEMATICA
T[n_, k_]:= T[n, k]= If[n<3 || k==0, 1, If[k==1, n-1, If[k==2, (n^2-n-2)/2 + Boole[n==2], If[k==n, T[n-1, n-2] +T[n-1, n-1], T[n-1, k-2] + T[n-1, k-1] + T[n -1, k] ]]]];
Table[T[n, k], {n, 0, 14}, {k, 0, n}]//Flatten (* corrected by G. C. Greubel, Sep 24 2022 *)
PROG
(Magma)
f:= func< n | n eq 2 select 1 else (n^2 -n -2)/2 >;
function T(n, k) // T = A026268
if k eq 0 or n lt 3 then return 1;
elif k eq 1 then return n-1;
elif k eq 2 then return f(n);
elif k eq n then return T(n-1, n-2) + T(n-1, n-1);
else return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k);
end if; return T;
end function;
[T(n, k): k in [0..n], n in [0..14]]; // G. C. Greubel, Sep 24 2022
(SageMath)
def T(n, k): # T = A026268
if n<3 or k==0: return 1
elif k==1: return n-1
elif k==2: return (n^2 -n -2)//2 + int(n==2)
elif k==n: return T(n-1, n-2) + T(n-1, n-1)
else: return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
flatten([[T(n, k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Sep 24 2022
KEYWORD
nonn,tabl
EXTENSIONS
Updated by Clark Kimberling, Aug 29 2014
Indices of b-file corrected by Sidney Cadot, Jan 06 2023.
STATUS
approved