login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377825
Number of distinct permutations of the terms of the n-th row of Pascal's triangle with alternating signs.
1
1, 2, 3, 24, 30, 720, 630, 40320, 22680, 3628800, 1247400, 479001600, 97297200, 87178291200, 10216206000, 20922789888000, 1389404016000, 6402373705728000, 237588086736000, 2432902008176640000, 49893498214560000, 1124000727777607680000, 12623055048283680000
OFFSET
0,2
COMMENTS
Note that for any given n, there are n+1 terms in that row.
LINKS
FORMULA
a(n) = (n+1)! / (2^((n*(1+(-1)^n)) / 4)).
E.g.f.: 2*(x^6+x^5-4*x^3-3*x^2+4*x+2)/((x-1)^2*(x+1)^2*(x^2-2)^2). - Alois P. Heinz, Nov 09 2024
a(n) = (n+1)!/A072345(n-1) for n > 0. - Stefano Spezia, Nov 09 2024
Sum_{n>=0} 1/a(n) = cosh(1) + sinh(sqrt(2))/sqrt(2) - 1. - Amiram Eldar, Dec 25 2024
EXAMPLE
For n = 0, a(0) = 1 since there is just one term.
For n = 1, the signed row terms are {1, -1} so a(1) = 2 permutations.
For n = 2, the signed row terms are {1, -2, 1} which have only a(2) = 3 distinct permutations.
For n = 3, the signed row terms are {1, -3, 3, -1} which have a(3) = 24 permutations.
MAPLE
seq((n+1)! / (2^((n*(1+(-1)^n)) / 4)), n=0..22); # Georg Fischer, Dec 19 2024
MATHEMATICA
A377825[n_] := (n+1)!/2^((n*(1 + (-1)^n))/4); Array[A377825, 25, 0] (* Paolo Xausa, Dec 20 2024 *)
CROSSREFS
Bisections are: A007019, A010050.
Sequence in context: A032811 A092049 A257789 * A336616 A354278 A061778
KEYWORD
nonn,easy
AUTHOR
Ryan Jean, Nov 08 2024
EXTENSIONS
a(22) corrected by Georg Fischer, Dec 19 2024
STATUS
approved