login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257789
Numbers n such that 2n*prime(n) - 1 and 2n*prime(n) + 1 are both prime.
1
1, 2, 3, 24, 30, 33, 54, 90, 156, 168, 189, 225, 294, 300, 402, 576, 741, 780, 825, 849, 918, 948, 978, 1014, 1245, 1542, 1551, 1608, 1614, 1617, 1770, 1773, 1908, 1914, 1920, 1947, 2025, 2286, 2361, 2370, 2598, 2760, 2865, 2970, 3081, 3516, 3744, 3759, 3948, 4023
OFFSET
1,2
COMMENTS
a(n) is divisible by 3 for n >= 3. - Robert Israel, May 08 2015
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
2 is in this sequence because 2*2*prime(2) - 1 = 11 and 2*2*prime(2) + 1 = 13 are both prime.
MAPLE
filter:= proc(n)
local p;
p:= ithprime(n);
isprime(2*n*p+1) and isprime(2*n*p-1)
end proc:
select(filter, [1, 2, seq(3*j, j=1..10^5)]); # Robert Israel, May 08 2015
MATHEMATICA
Select[Range[3000], PrimeQ[2 # Prime[#] - 1] && PrimeQ[2 # Prime[#] + 1] &] (* Vincenzo Librandi, May 09 2015 *)
Select[Range[4200], AllTrue[2# Prime[#]+{1, -1}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 08 2018 *)
PROG
(Magma) [n: n in [1..4500] | IsPrime(2*n*NthPrime(n)-1) and IsPrime(2*n*NthPrime(n)+1)];
(PARI) v=List(); n=0; forprime(p=2, 1e5, n++; if(isprime(2*n*p-1) && isprime(2*n*p+1), listput(v, n))); Vec(v) \\ Charles R Greathouse IV, May 08 2015
CROSSREFS
Cf. A085637.
Sequence in context: A037319 A032811 A092049 * A377825 A336616 A354278
KEYWORD
nonn,easy
AUTHOR
STATUS
approved