login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that 2n*prime(n) - 1 and 2n*prime(n) + 1 are both prime.
1

%I #21 Sep 08 2022 08:46:12

%S 1,2,3,24,30,33,54,90,156,168,189,225,294,300,402,576,741,780,825,849,

%T 918,948,978,1014,1245,1542,1551,1608,1614,1617,1770,1773,1908,1914,

%U 1920,1947,2025,2286,2361,2370,2598,2760,2865,2970,3081,3516,3744,3759,3948,4023

%N Numbers n such that 2n*prime(n) - 1 and 2n*prime(n) + 1 are both prime.

%C a(n) is divisible by 3 for n >= 3. - _Robert Israel_, May 08 2015

%H Charles R Greathouse IV, <a href="/A257789/b257789.txt">Table of n, a(n) for n = 1..10000</a>

%e 2 is in this sequence because 2*2*prime(2) - 1 = 11 and 2*2*prime(2) + 1 = 13 are both prime.

%p filter:= proc(n)

%p local p;

%p p:= ithprime(n);

%p isprime(2*n*p+1) and isprime(2*n*p-1)

%p end proc:

%p select(filter, [1,2,seq(3*j,j=1..10^5)]); # _Robert Israel_, May 08 2015

%t Select[Range[3000], PrimeQ[2 # Prime[#] - 1] && PrimeQ[2 # Prime[#] + 1] &] (* _Vincenzo Librandi_, May 09 2015 *)

%t Select[Range[4200],AllTrue[2# Prime[#]+{1,-1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Dec 08 2018 *)

%o (Magma) [n: n in [1..4500] | IsPrime(2*n*NthPrime(n)-1) and IsPrime(2*n*NthPrime(n)+1)];

%o (PARI) v=List(); n=0; forprime(p=2,1e5, n++; if(isprime(2*n*p-1) && isprime(2*n*p+1), listput(v,n))); Vec(v) \\ _Charles R Greathouse IV_, May 08 2015

%Y Cf. A085637.

%K nonn,easy

%O 1,2

%A _Juri-Stepan Gerasimov_, May 08 2015